
1/31

A Hitch-hacker's Guide to DACL-Based Detections
(Part 3)

trustedsec.com/blog/a-hitch-hackers-guide-to-dacl-based-detections-part-3

This blog series was co-authored by Security Consultant Megan Nilsen and TAC Practice
Lead Andrew Schwartz.

1 Introduction

In this third and final installment, we will continue our exploration of object and attribute
attacks and their subsequent detections. Just as Part 1 focused on stepping through the flow
charts provided in the DACL section of the Hacker Recipes, and Part 2 focused on
modifiable attributes using PowerMad, Part 3 will focus on a collection of additional attributes
that fall outside of the scope of Parts 1 and 2, but that we’ve identified as having value in
building detections for.

Although this post will make use of a variety of different “attack” tools, it should be noted that
the tool is a means for use to execute the attack, but we are more focused on the underlying
techniques of modifiable attributes and the detections surrounding them.

Just as the first two (2) posts established, a couple of reminders:

We are operating under the assumption that the adversary already has a foothold
within the domain and has acquired the appropriate access they need to make
modifications to the objects we will discuss.
Post-exploitation is not a focus.
Intelligence applied to adversary attribution has not been mapped.
A subset of Windows Event logging has been used, and not all the possible telemetry
data points within this data set have been analyzed.

2 Logging Setup

As noted in Part 1, for telemetry purposes, we will be relying on setting an “Auditing” system
access control list (SACL) on each of these attributes and the following Windows Event IDs:

Configuring a SACL is an additional step that must be taken even if the above listed
Windows Events are currently being ingested.

Please refer to Part 1A on how to enable and configure the logging setup of the SACL and
how to enable/ingest the above Windows Event IDs.

https://trustedsec.com/blog/a-hitch-hackers-guide-to-dacl-based-detections-part-3
https://www.thehacker.recipes/ad/movement/dacl
https://github.com/Kevin-Robertson/Powermad
https://trustedsec.com/blog/a-hitchhackers-guide-to-dacl-based-detections-part-1-a

2/31

3 Blog Format

Due to the length of this post and the number of attributes covered, it is important to
remember a couple of key formatting guidelines from Part 1 as we step through this post.

Each section will contain the following headings:
Name of the Attribute (common name (CN) of the attribute)
Background

Will cover a brief overview of what the attribute (LDAP-Display-Name) is and the
relevant links to Microsoft documentation

Modifying the Attribute (Attack)
Will cover how the “attack” was performed, including relevant setup for modifying
the attribute in question, screenshots/commands, and tools used
If additional auditing was enabled for building the detection, it will also likely be
covered here—or, if additional setup was more complex, it will be broken out into
a preceding or subsequent heading.

Building the Detections
Will cover a variety of detections that will include a range of complexity
As was stated in the introduction, not all the possible telemetry data points within
this data set have been analyzed. However, we have tried our best to cover the
Event IDs that are most accessible and prominent for building out detections.
Where necessary, we will provide a flow of logic for detections that involve more
complexity or additional information to interpret what is being shown. However,
most detections will follow a similar format and will not be explained in further
detail.

4 Attributes

4.1 AdminSDHolder

4.1.1 Background

The AdminSDHolder object acts as a container that is populated with default permissions.
This container is then used as a template for protected accounts to prevent tampering or
unintended/unauthorized changes. Protected users can be defined by domain policy, but
also typically include by default users within groups such as Domain Admins, Administrators,
Enterprise Admins, and Schema Admins.

Attackers who have gained sufficient privileges can use this container to maintain
persistence as the access control lists (ACLs) to the AdminSDHolder object are reapplied
by default every 60 minutes.

4.1.2 Modifying the Object (Attack)

https://viperone.gitbook.io/pentest-everything/everything/everything-active-directory/persistence/adminsdholder

3/31

Add-DomainObjectAcl -TargetIdentity
‘CN=AdminSDHolder,CN=System,DC=BREAKFASTLAND,DC=local’ -PrincipalIdentity dacled.egg
-Rights All -verbose

Figure 1 - Modifying the Object

4.1.3 Building the Detection

4.1.3.1 Detection with Event IDs 5136 and 4662

index=main ((EventCode=5136 Class=container
DN="CN=AdminSDHolder,CN=System,DC=BREAKFASTLAND,DC=LOCAL"
LDAP_Display_Name=nTSecurityDescriptor) OR (index=main Account_Name!=*$
Object_Type="%{19195a5b-6da0-11d0-afd3-00c04fd930c9}" Object_Name="%{754fb287-55d2-
4d68-b7fc-0332e1746740}" EventCode=4662 Access_Mask = 0x40000))

| eval Logon_ID=if(EventCode==4662,mvindex(Logon_ID,-1), mvindex(Logon_ID,-1))

| eval user=if(EventCode==4662,mvindex(Account_Name,-1), mvindex(Account_Name,-1))

| eval DACL=if(EventCode==5136,mvindex(Value,-1), mvindex(Value,-1))

| join type=outer Logon_ID

 [search index=main Account_Name!=*$ Object_Type="%{19195a5b-6da0-11d0-afd3-
00c04fd930c9}" Object_Name="%{754fb287-55d2-4d68-b7fc-0332e1746740}" EventCode=4662
Access_Mask = 0x40000

 | eval Props=Properties

 | eval AccessMask=Access_Mask
 | eval ObjectType=Object_Type
 | eval ObjectName=Object_Name
 |table Account_Name,Logon_ID,Props,AccessMask,ObjectType, ObjectName]

| table _time, Logon_ID, Account_Name, Props, AccessMask, ObjectType, ObjectName,
DN, GUID, DACL, Class, Type, LDAP_Display_Name

|stats values by _time, Logon_ID, DACL

4/31

Figure 2 - Detection Using Multiple Event IDs (1)

Figure 3 - Detection Using Multiple Event IDs (2)

4.2 ms-DS-Supported-Encryption-Types

4.2.1 Background

The msDS-SupportedEncryptionTypes attribute defines which ciphers Kerberos is allowed to
use for the encryption of Kerberos tickets.

4.2.2 Modifying the Attribute (Attack)

Before we can modify the msDS-SupportedEncryptionTypes attribute, we must first gain
an understanding on how the hex and/or decimal values are associated with the encryption
types so that we can correctly modify the attribute with our PowerMad cmdlet.

https://learn.microsoft.com/en-us/windows/win32/adschema/a-msds-supportedencryptiontypes

5/31

The chart linked here shows the decimal value, hex value, and the supported encryption
types that the msDS-SupportedEncryptionTypes attribute can be defined as. For our
purposes, we are going to use decimal value 24 (hex value 0x18) to modify the attribute to
enable support for encryption types AES 128 and AES 256. This value was chosen
arbitrarily.

Figure 4 - Modifying the Attribute

Figure 5 - Validating Attribute Modification Change

4.2.3 Building the Detection

4.2.3.1 Detection With Event IDs 5136, 4624, and 4662

https://techcommunity.microsoft.com/t5/core-infrastructure-and-security/decrypting-the-selection-of-supported-kerberos-encryption-types/ba-p/1628797

6/31

index=main ((EventCode=5136 AND LDAP_Display_Name=msDS-SupportedEncryptionTypes) OR
(EventCode=4624 AND Account_Name!="*$" AND Account_Name!="ANONYMOUS LOGON" AND
Account_Name!="SYSTEM") OR (EventCode=4662 AND Access_Mask=0x20))

| eval Logon_ID=if(EventCode==4624,mvindex(Logon_ID,-1), mvindex(Logon_ID,-1))

| eval Mod_Account=if(EventCode==4624,mvindex(Account_Name,-1),
mvindex(Account_Name,-1))

| eval Mod_Value=if(EventCode==5136,mvindex(Value,-1), mvindex(Value,-1))

| join type=outer Logon_ID
 [search (EventCode=5136) OR (EventCode=4624)

 | stats count by Logon_ID, Account_Name, Source_Network_Address

 | table Account_Name,Logon_ID, Source_Network_Address]

| join type=outer Logon_ID

 [search index=main Account_Name!=*$ EventCode=4662 Access_Mask = 0x20

 | eval Props=Properties

 | eval AccessMask=Access_Mask
 | eval ObjectType=Object_Type
 | eval ObjectName=Object_Name
 | rex field=Message "(?<Object_Properties>(?ms)(?<=)Properties:(.*?)(?
=Additional\s+))"

 |table Account_Name,Logon_ID,Props,AccessMask,ObjectType, ObjectName,
Object_Properties]

| table _time, Mod_Account, Source_Network_Address , Class, DN, Logon_ID, Type,
LDAP_Display_Name, Mod_Value, AccessMask, Props, Object_Properties

| where len(Class)>0

| stats values by _time, Mod_Value

Figure 6 - Detecting Using Multiple Event IDs (1)

Figure 7 - Detecting Using Multiple Event IDs (2)

4.3 ms-DS-Reveal-On-Demand-Group

7/31

For this section, we will be referencing the blog At the Edge of Tier Zero: The Curious Case
of the RODC by Elad Shamir (@elad_shamir). The aforementioned blog post is a great tool
to understanding RODCs and the importance of the msds-RevealOnDemandGroup
attribute.

However, to summarize for the purpose of this post, the msds-RevealOnDemandGroup
attribute stores the objects (i.e., users, computers, groups) that are permitted to have their
passwords cached on a read-only domain controller (RODC).

4.3.1 Modifying the Attributes (Attack)

Set-ADObject -Identity ‘CN=BREAKFAST-DC-03,OU=Domain
Controllers,DC=BREAKFASTLAND,DC=LOCAL’ -Add @{‘msDS-
RevealOnDemandGroup’=@(‘CN=Allowed RDOC Password Replication
Group,CN=Users,DC=BREAKFASTLAND,DN=LOCAL’,
‘CN=dacled.egg,CN=Users,DC=BREAKFASTLAND,DC=LOCAL’)} -Server 10.0.2.4

Figure 8 - Modifying the Attribute

Figure 9 - Validating Change to the Attribute

4.3.2 Building the Detection

4.3.2.1 Detection Using Event IDs 5136, 4624, and 4662

https://eladshamir.com/2023/01/25/RODCs.html
https://x.com/elad_shamir?t=KyrzvUTtegquv3NXozAZ4w&s=09
https://learn.microsoft.com/en-us/windows/win32/adschema/a-msds-revealondemandgroup

8/31

index=main ((EventCode=5136 AND LDAP_Display_Name=msDS-RevealOnDemandGroup) OR
(EventCode=4624 AND Account_Name!="*$" AND Account_Name!="ANONYMOUS LOGON" AND
Account_Name!="SYSTEM") OR (EventCode=4662 AND Access_Mask=0x20 AND {303d9f4a-1dd6-
4b38-8fc5-33afe8c988ad}))

| eval Logon_ID=if(EventCode==4624,mvindex(Logon_ID,-1), mvindex(Logon_ID,-1))

| eval Mod_Account=if(EventCode==4624,mvindex(Account_Name,-1),
mvindex(Account_Name,-1))

| join type=outer Logon_ID
 [search (EventCode=5136) OR (EventCode=4624)

 | stats count by Logon_ID, Account_Name, Source_Network_Address

 | table Account_Name,Logon_ID, Source_Network_Address]

| join type=outer Logon_ID

 [search index=main Account_Name!=*$ EventCode=4662 Access_Mask = 0x20

 | eval Props=Properties

 | eval AccessMask=Access_Mask
 | eval ObjectType=Object_Type
 | eval ObjectName=Object_Name
 | rex field=Message "(?<Object_Properties>(?ms)(?<=)Properties:(.*?)(?
=Additional\s+))"

 |table Account_Name,Logon_ID,Props,AccessMask,ObjectType, ObjectName,
Object_Properties]

| table _time, Mod_Account, Source_Network_Address , Class, DN, Logon_ID, Type,
LDAP_Display_Name, Value, AccessMask, Props, Object_Properties

| where len(Class)>0

| stats values by _time, Value, Logon_ID

Figure 10 - Detection With Event IDs 5136, 4662, and 4624 (1)

9/31

Figure 11 - Detection With Event IDs 5136, 4662, and 4624 (2)

4.4 GPC-Machine-Extension-Names

4.4.1 Background

The gPCMachineExtensionName attribute maintains a list of globally unique identifiers
(GUIDs) for which group policy object (GPO) client-side extensions and Microsoft
Management Console (MMC) snap-ins are required by the machine policy settings.

By editing the GUIDS stored in the attribute, an attacker could potentially use GPO to pull
down a file from a remotely controlled host and upload it to a domain controller.

4.4.2 Modifying the Attribute (Attack)

For this particular attack sequence, we will be very closely following the attack path as
outlined in this TrustedSec blog post.

Firstly, we're going to do some reconnaissance to identify the GPO name that we are going
to modify.

Figure 12 - Performing Reconnaissance

As you can see, the “DisplayName” for the GPO is AttackGPO, but its name, and the value
we will need to make our modifications, is “{7ECE4273-CEEB-44BA-B777-C5FE3DBES
257}.”

https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-gpod/896f59a5-5b72-4fb5-b1d4-8d007fdd6cb3
https://www.trustedsec.com/blog/weaponizing-group-policy-objects-access/

10/31

$objs= Get-ADObject -SearchBase “CN=Policies,CN=System,DC=BREAKFASTLAND,DC=LOCAL” -
LDAPFilter “(objectclass=*)” -Credential $creds -Server 10.0.2.4 -Properties
displayName,gPCMachineExtensionNames

$dcgpos =$objs | ?{$_.displayName -like “Attack”}

$dcgpos

Figure 13 - Performing Reconnaissance

With a GPO name and GUID in hand, we can now run our attack.

Note: To conduct this attack properly, replacing the gPCMachineExtensionNames attribute
with the string [{GUID}{GUID}] will obviously not work correctly. However, because we are
only concerned with detecting changes made to the object, and not necessarily designing a
functional attack, this is sufficient to generate the logging data we will need for detection
within our SIEM. For running this attack properly, we recommend reading through the
references linked for this section (or short-linked above), as it does a fantastic job of walking
you through the designated attack sequence. Alternately it is important to note this GPO was
created for the purpose of making these modifications, use caution if running the following
attack in a production environment.

$dcgomain = $dcgpos | ?{$_.Name -eq “{7ECE4273-CEEB-44BA-B777-C5FE3DBE5257}”}

$gpcme = “[{GUID}{GUID}]” + $dcgpomain.gPCMachineExtensionNames

Set-ADObject -Replace @{gPCMachineExtensionNames=$gpcme} -Server 10.0.2.4 -Credential
$creds -Identity $dcgpomain.DistinguishedName

Get-ADObject -Credential $creds -Server 10.0.2.4 -Identity
$dcgpomain.DistinguishedName -Properties displayName, gPCMachineExtensionNames

Figure 14 - Modifying the GPO

11/31

And we can confirm through Active Directory Service Interface Editor (ADSI) edit that the
change was made to the correct GPO:

Figure 15 - Validating Changes

4.4.3 Building the Detection

4.4.3.1 Detection with Event IDs 5136 and 4624

index=main ((EventCode=5136 AND LDAP_Display_Name=gPCMachineExtensionNames) OR
(EventCode=4624 AND Account_Name!="*$" AND Account_Name!="ANONYMOUS LOGON" AND
Account_Name!="SYSTEM"))

| eval Logon_ID=if(EventCode==4624,mvindex(Logon_ID,-1), mvindex(Logon_ID,-1))

| eval Mod_Account=if(EventCode==4624,mvindex(Account_Name,-1),
mvindex(Account_Name,-1))

| join type=outer Logon_ID

 [search (EventCode=5136) OR (EventCode=4624)

 | stats count by Logon_ID, Account_Name, Workstation_Name

 | table Account_Name,Logon_ID, Workstation_Name]

| table _time, EventCode, Mod_Account, Workstation_Name , Class, DN, Logon_ID, Type,
LDAP_Display_Name, Value

| where len(Class)>0

12/31

Figure 16 - Final Query for gPCMachineExtensionName Modification (1)

Figure 17 - Final Query for gPCMachineExtensionName Modification (2)

4.5 GPC-File-Sys-Path

4.5.1 Background

gpC-File-Sys-Path is another GPO-based attribute that, like gPCMachineExtensionName,
can give access to the “rights cloned to the GPO-specific folder on the filesystem where the
associated SYSVOL is located” (An Ace up the Sleeve, pg. 30) when a user is granted write
access for a GPO.

You can see in the below image that the gPCFileSysPath object is linking to the Sysvol
location.

Figure 18 - gPCFileSysPath Before Modification

https://learn.microsoft.com/en-us/windows/win32/adschema/a-gpcfilesyspath
https://specterops.io/wp-content/uploads/sites/3/2022/06/an_ace_up_the_sleeve.pdf

13/31

4.5.2 Modifying the Attribute (Attack)

Using the exact same attack path as we did for the gPCMachineExtension attribute, we can
utilize the reconnaissance already done and simply create a new variable with which to store
our change. Then, we make and confirm the change with the same PowerShell command,
adjusting the command to add our newly created variable.

$gpfsp = \\imposter.LOCAL\SysVol\imposter.LOCAL\Policies\{7ECE4273-CEEB-44BA-B777-
C5FE3DBE5257} + $dcgpomain.gPCMachineExtensionNames

Set-ADObject -Replace @{gPCFileSysPath=$gpfsp} -Server 10.0.2.4

-Credential $creds -Identity $dcgpomain.DistinguishedName

Get-ADObject -Credential $creds -Server 10.0.2.4 -Identity $dcgpomain.
DistinguishedName -Properties displayName, gPCFileSysPath

Figure 19 - Modifying gPCFileSysPath Attribute

4.5.3 Building the Detection

4.5.3.1 Detection with Event IDs 5136 and 4624

index=main ((EventCode=5136 AND LDAP_Display_Name=gpcFileSysPath) OR (EventCode=4624
AND Account_Name!="*$" AND Account_Name!="ANONYMOUS LOGON" AND
Account_Name!="SYSTEM"))

| eval Logon_ID=if(EventCode==4624,mvindex(Logon_ID,-1), mvindex(Logon_ID,-1))

| eval Mod_Account=if(EventCode==4624,mvindex(Account_Name,-1),
mvindex(Account_Name,-1))

| join type=outer Logon_ID

 [search (EventCode=5136) OR (EventCode=4624)

 | stats count by Logon_ID, Account_Name, Workstation_Name

 | table Account_Name,Logon_ID, Workstation_Name]

| table _time, EventCode, Mod_Account, Workstation_Name , Class, DN, Logon_ID, Type,
LDAP_Display_Name, Value

| where len(Class)>0

14/31

Figure 20 - Final gPCFileSysPath Detection (1)

Figure 21 - Final gPCFileSysPath Detection (2)

4.6 NT-Security-Descriptor

4.6.1 Background

The NTSecurityDescriptor attribute stores data about an object, such as ownership and
permissions, within a “Security Descriptor String Format.”

4.6.2 Enabling Auditing

For these particular detections, we will need to enable auditing in two (2) places. First, you
will need to enable auditing from certsrv, which can be opened via server manager on your
Domain Controller.

Figure 22 – Enabling certsrv Auditing

For object access auditing, we will also need to navigate to our templates within ADSI edit
and enable auditing for the certificate template we wish to track events for—in this case, the
User template.

https://learn.microsoft.com/en-us/windows/win32/adschema/a-ntsecuritydescriptor
https://learn.microsoft.com/en-us/windows/win32/secauthz/security-descriptor-string-format?redirectedfrom=MSDN

15/31

Figure 23 - Enabling Object Auditing

4.6.3 Modifying the Attribute (Attack)

For this attack, we will leverage a certificate template vulnerable to an ESC4 attack using the
tool Certipy to find and locate all the certificate templates available on the domain. For more
information on certificate template vulnerabilities and exploits, please review the Certipy
GitHub.

certipy find -u head.chef@breakfastland.local -p <yourpassword> -scheme ldap -dc-ip
10.0.2.4

Figure 24 - Querying for AD CS Templates

https://github.com/ly4k/Certipy

16/31

 In this case, we can quickly identify that the User template is vulnerable to ESC4.

Note: Typically, in the wild, we would be looking for the group that has “dangerous
permissions” to be Domain Users, Authenticated Users, or Domain Computers. In this case,
the only group with the permissions to downgrade the ESC4 vulnerable template is the
Domain Admins group—which, for the purpose of executing the attack to modify the
attribute, is sufficient.

Figure 25 - ESC4 Vulnerable Template

We then downgrade the ESC4 template to be vulnerable to ESC1 and save the old template
configuration in User.json.

certipy template -username head.chef@breakfastland.local -p <yourpassword> -template
‘User’ -scheme ldap -save-old -dc-ip 10.0.2.4

Figure 26 - Downgrading ESC4 to ESC1

17/31

Next, we request a certificate using the ESC1 template. In this case, the requesting user is
sous.chef, a non-privileged user, who is requesting the certificate on behalf of a Domain
Admin account, head.chef. This is specified using the UPN flag.

certipy req -username sous.chef@breakfastland.local -p <> -upn
head.chef.breakfastland.local -template ‘User’ -ca BREAKFASTLAND-BREAKFAST-DC-01-CA -
target BREAKFAST-DC-01.BREAKFASTLAND.LOCAL -dc-ip 10.0.2.4

Figure 27 - Requesting a Certificate

And now, we restore the certificate, again using Certipy. As you can see in the output, it is
modifying the ntSecurityDescriptor field. According to the Rapid7 article that inspired this
section, it is the specification of the UPN that triggers the ntSecurityDescriptor field to be
updated.

certipy template -username head.chef@breakfastland.local -p <yourpassword> -template
-User -configuration User.json -dc-ip 10.0.2.4

Figure 28 - Restoring the Certificate/Modifying the ntSecurityDescriptor Attribute

4.6.4 Building the Detections

4.6.4.1 Detection Using Event ID 4898

index=main EventCode=4898

| table time, EventCode, host, DomainController, Security_Descriptor, Message

https://www.rapid7.com/blog/post/2023/06/02/metasploit-weekly-wrap-up-12/

18/31

Figure 29 - Detecting ntSecurityDescriptor Change via Event ID 4898 (1)

Figure 30 - Detecting ntSecurityDescriptor Change via Event ID 4898 (2)

4.6.4.2 Detection Using Event IDs 5136, 4662, and 4624

19/31

index=main ((EventCode=5136 AND LDAP_Display_Name=ntSecurityDescriptor) OR
(EventCode=4624 AND Account_Name!="*$" AND Account_Name!="ANONYMOUS LOGON" AND
Account_Name!="SYSTEM") OR (EventCode=4662 AND Access_Mask=0x20))

| eval Logon_ID=if(EventCode==4624,mvindex(Logon_ID,-1), mvindex(Logon_ID,-1))

| eval Mod_Account=if(EventCode==4624,mvindex(Account_Name,-1),
mvindex(Account_Name,-1))

| join type=outer Logon_ID

 [search (EventCode=5136) OR (EventCode=4624)

 | stats count by Logon_ID, Account_Name, Source_Network_Address

 | table Account_Name,Logon_ID, Source_Network_Address]

| join type=outer Logon_ID

 [search index=main Account_Name!=*$ EventCode=4662 Access_Mask = 0x20

 | eval Props=Properties

 | eval AccessMask=Access_Mask

 | eval ObjectType=Object_Type

 | eval ObjectName=Object_Name

 | rex field=Message "(?<Object_Properties>(?ms)(?<=)Properties:(.*?)(?
=Additional\s+))"

 |table Account_Name,Logon_ID,Props,AccessMask,ObjectType, ObjectName,
Object_Properties]

| table time, ModAccount, Source_Network_Address , Class, DN, Logon_ID, Type,
LDAP_Display_Name, Value, AccessMask, Props, Object_Properties

| where len(Class)>0

| stats values by time, Value, LogonID

Figure 31 - Detecting With Event IDs 5136, 4624, and 4662 (1)

Figure 32 - Detecting With Event IDs 5136, 4624, and 4662 (2)

4.6.4.3 Detection Using Event IDs 5136, 4662, and 4624 - PKI

20/31

In this case, there are additional attribute modification changes that are initiated when
running this attack. To account for them, you can also build a detection that adds the
additional public key infrastructure (PKI) attributes to the detection.

index=main ((EventCode=5136 AND (LDAP_Display_Name="*pki*" OR
LDAP_Display_Name=ntSecurityDescriptor)) OR (EventCode=4624 AND Account_Name!="*$"
AND Account_Name!="ANONYMOUS LOGON" AND Account_Name!="SYSTEM") OR (EventCode=4662
AND Access_Mask=0x20))

| eval Logon_ID=if(EventCode==4624,mvindex(Logon_ID,-1), mvindex(Logon_ID,-1))

| eval Mod_Account=if(EventCode==4624,mvindex(Account_Name,-1),
mvindex(Account_Name,-1))

| join type=outer Logon_ID

 [search (EventCode=5136) OR (EventCode=4624)

 | stats count by Logon_ID, Account_Name, Source_Network_Address

 | table Account_Name,Logon_ID, Source_Network_Address]

| join type=outer Logon_ID

 [search index=main Account_Name!=*$ EventCode=4662 Access_Mask = 0x20

 | eval Props=Properties

 | eval AccessMask=Access_Mask

 | eval ObjectType=Object_Type

 | eval ObjectName=Object_Name

 | rex field=Message "(?<Object_Properties>(?ms)(?<=)Properties:(.*?)(?
=Additional\s+))"

 |table Account_Name,Logon_ID,Props,AccessMask,ObjectType, ObjectName,
Object_Properties]

| table time, ModAccount, Source_Network_Address , Class, DN, Logon_ID, Type,
LDAP_Display_Name, Value, AccessMask, Props, Object_Properties

| where len(Class)>0

| stats values by time, LDAPDisplay_Name, Value, Logon_ID

Figure 33 - Additional Object Change Detections (PKI Objects) (1)

21/31

Figure 34 - Additional Object Change Detections (PKI Objects) (2)

4.7 CA-Certificate

4.7.1 Background

The cACertificate attribute stores certificates that have been saved from trusted Certification
Authorities (CAs).

4.7.2 Enabling Auditing/Misconfiguring the Domain

For the following attack, we will be following the blog write-up done by decoder
(@decoder_it).

Note: We will not be following the full attack sequence, as the modification to the attribute is
done within the first few steps of the post. To simulate the full attack patch, please follow the
full walkthrough here.

In preparation for staging our attack, we will first need to give a standard user “GenericAll”
privileges to the NTAuthCertificates object. This can be done through ADSI edit or through
PowerShell.

In this case, we are using imposter.oatmeal as our misconfigured account.

https://learn.microsoft.com/en-us/windows/win32/adschema/a-cacertificate
https://decoder.cloud/
https://x.com/decoder_it?t=LAqYwbCnPmRfIPbrbPDmfw&s=09
https://decoder.cloud/2023/09/05/from-ntauthcertificates-to-silver-certificate/
https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-wcce/f1004c63-8508-43b5-9b0b-ee7880183745

22/31

Figure 35 - Misconfiguring the Object

Next, we will need to build the SACL entry for the NTAuthCertificates object so that we will
receive the logging data within Splunk.

23/31

Figure 36 - Enabling the SACL

Once this is complete, we can initiate our attack to change the attribute.

4.7.3 Modifying the Attribute (Attack)

To start, we will first create a fake, self-signed CA.

Figure 37 - CA Creation (1)

As stated in the blog from decoder, you can leave all fields blank, with the exception of
“Common Name.”

24/31

Figure 38 -CA Creation (2)

Once the fake CA is created, we can now move the fake.crt file created onto a domain
joined Windows host and use the native binary certutil to update the cACertificate attribute
with the additional public key value.

It is important to note here that we are logged into the Windows host as the account
imposter.oatmeal, which is the account we “misconfigured” to have special permissions
over the object that we are modifying.

Figure 39 - Pushing the Fake CA to the Domain

And now, if we take a look at our cACertificate attribute, we can see that it has been
modified with the value of the fake certificate.

https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/certutil

25/31

Figure 40 - Attribute Post Modification

4.7.4 Building the Detections

4.7.4.1 Detection with Event IDs 5136, 4662, and 4624

26/31

index=main ((EventCode=5136 AND LDAP_Display_Name=cACertificate) OR (EventCode=4624
AND Account_Name!="*$" AND Account_Name!="ANONYMOUS LOGON" AND
Account_Name!="SYSTEM") OR (EventCode=4662 AND Access_Mask=0x20))

| eval Logon_ID=if(EventCode==4624,mvindex(Logon_ID,-1), mvindex(Logon_ID,-1))

| eval Mod_Account=if(EventCode==4624,mvindex(Account_Name,-1),
mvindex(Account_Name,-1))

| eval Changed_Value=if(EventCode==5136,mvindex(Value,-1), mvindex(Value,-1))

| join type=outer Logon_ID
 [search (EventCode=5136) OR (EventCode=4624)

 | stats count by Logon_ID, Account_Name, Source_Network_Address

 | table Account_Name,Logon_ID, Source_Network_Address]

| join type=outer Logon_ID

 [search index=main Account_Name!=*$ EventCode=4662 Access_Mask = 0x20

 | eval Props=Properties

 | eval AccessMask=Access_Mask
 | eval ObjectType=Object_Type
 | eval ObjectName=Object_Name
 | rex field=Message "(?<Object_Properties>(?ms)(?<=)Properties:(.*?)(?
=Additional\s+))"

 |table Account_Name,Logon_ID,Props,AccessMask,ObjectType, ObjectName,
Object_Properties]

| table _time, Mod_Account, Source_Network_Address , Class, DN, Logon_ID, Type,
LDAP_Display_Name, Changed_Value, AccessMask, Props, Object_Properties

| where len(Class)>0

| stats values by _time, Changed_Value

Figure 41 - Detection with Event IDs 5136, 4662, and 4624 (1)

Figure 42 - Detection with Event IDs 5136, 4662, and 4624 (2)

4.8 Primary-Group-ID

4.8.1 Background

The primaryGroupID contains the identifier for the primary group (RID) that the user or
computer object belongs to.

4.8.2 Modifying the Attribute (Attack)

The primaryGroupID attribute is easy to modify through the ADUC GUI.

https://learn.microsoft.com/en-us/windows/win32/adschema/a-primarygroupid

27/31

First navigate to ADUC
Open the properties window of the computer/user object you are modifying
Navigate to the “Member Of” Tab
Click “Add”

Select the Group Name of the Group you would like to make the Primary group.
Click ok, then apply.

Select the newly added group in the “Member of” box
Click the button below the box that says “Set Primary Group”
Hit Apply

Figure 43 - Changing primaryGroupID of COFFEEPOT-PC

4.8.3 Building the Detections

For the following detections we rely on Event ID 4738 and 4742 for user and computer
objects respectively. Be sure to configure your SACL on the object you are trying to audit to
ensure that logs will be generated and sent to your SIEM.

4.8.3.1 Detection Using Event ID 4738 and Event ID 4624

28/31

index=main AND (EventCode=4738 AND Primary_Group_ID!="-") OR EventCode=4624

| eval logon_id=if(EventCode=4624,mvindex(Logon_ID,1),mvindex(Logon_ID,0))

| eventstats values(EventCode) values(Source_Network_Address) by logon_id

| rename values(*) as *

| eval account_name=mvindex(Account_Name,1)

| sort _time

| where isnotnull(Primary_Group_ID)

| table _time, account_name, logon_id, Source_Network_Address, Primary_Group_ID

| stats values by logon_id, account_name

Figure 44 - Detection with Event ID 4738 and 4624

4.8.3.2 Detection Using Event ID 4742 and Event ID 4624

index=main AND (EventCode=4742 AND Primary_Group_ID!="-") OR EventCode=4624

| eval logon_id=if(EventCode=4624,mvindex(Logon_ID,1),mvindex(Logon_ID,0))

| eventstats values(EventCode) values(Source_Network_Address) by logon_id

| rename values(*) as *

| eval account_name=mvindex(Account_Name,1)

| sort _time

| where isnotnull(Primary_Group_ID)

| table _time, account_name, logon_id, Source_Network_Address, Primary_Group_ID

| stats values by logon_id, account_name

Figure 45 - Detection with Event ID 4742 and 4624

4.8.3.3 primaryGroupID Detections with RID Filtering

It’s important to note that the previous queries are only filtering for Primary Group ID’s that
are not equal to “-“ (null). However, for organizations that may experience high volumes of
events for these EventIDs, you may wish to adjust your filtering to look for or to exclude
certain RID groups.

For example, you could modify the below detection as follows so that only user accounts that
have their primaryGroupID changed to 512 (Domain Admins) picked up by the query:

29/31

index=main AND (EventCode=4738 AND Primary_Group_ID="512") OR EventCode=4624

| eval logon_id=if(EventCode=4624,mvindex(Logon_ID,1),mvindex(Logon_ID,0))

| eventstats values(EventCode) values(Source_Network_Address) by logon_id

| rename values(*) as *

| eval account_name=mvindex(Account_Name,1)

| sort _time

| where isnotnull(Primary_Group_ID)

| table _time, account_name, logon_id, Source_Network_Address, Primary_Group_ID

| stats values by logon_id, account_name

5 Conclusion

Our hope is that from this series of blog posts, professionals and organizations not only gain
more awareness as to just how vast the Active Directory (AD) attack surface is, but also how
to detect against common attacks that are abused by penetration testers, red teamers, and
threat actors alike.

From a security perspective, it is also our hope that a key takeaway from these posts is the
importance of frequently auditing the permissions to read or write to these attributes. Tools
like Bloodhound, PingCastle, and PurpleKnight can help identify and verify many of these
easily remediated issues.

Another key point to remember when trying to implement the detections provided in these
three (3) blog posts within your own SIEM environment is that all detections were built in a
lab environment. A real-world production environment will require additional tuning to remove
false positives.

While a best practice and preference maybe to audit all attributes, we recognize, understand,
and operate within the constraints of SIEM licensing costs. We wanted to highlight and
prioritize some of the more significant attacks/abuses and thus have not covered every
single attribute. We recognize we did not use “intelligence” to drive the prioritization of where
the attributes fell in which posts. Rather, we started with some of the more “common”
attributes (beginning with the DACL abuse chart from the Hacker Recipes) that red teamers
and penetration testers may abuse, and ending with the least-common or “forgotten”
attributes.

As detections may not have been built for all possible attack/abuses, the detection templates
within these posts can be leveraged to further build upon the use-cases outlined as new
attacks/techniques are published, or to cover objects that we did not discuss.

 And finally, another big thank you to all those who assisted with peering, reviewing, and
providing suggestions to make this blog series as good as it could be:

Charlie Bromberg (@_nwodtuhs)

Jonathan Johnson (@jsecurity101)

https://github.com/BloodHoundAD/BloodHound.git
https://github.com/vletoux/pingcastle
https://www.purple-knight.com/
https://twitter.com/_nwodtuhs
https://twitter.com/jsecurity101

30/31

Jim Sykora (@jimsycurity)

Kevin Clark (@GuhnooPlusLinux)

6 References:

https://www.thehacker.recipes/ad/movement/dacl

https://stackoverflow.com/questions/73107061/convert-datetime-in-a-command

https://www.youtube.com/watch?v=ExO535CITXs

https://specterops.io/wp-content/uploads/sites/3/2022/06/an_ace_up_the_sleeve.pdf

Windows Events:

https://learn.microsoft.com/en-us/windows/security/threat-protection/auditing/event-4662

https://learn.microsoft.com/en-us/windows/security/threat-protection/auditing/event-4624

https://learn.microsoft.com/en-us/windows/security/threat-protection/auditing/event-5145

https://learn.microsoft.com/en-us/windows/security/threat-protection/auditing/event-4742

https://learn.microsoft.com/en-us/windows/security/threat-protection/auditing/event-4738

AdminSDHolder:

https://viperone.gitbook.io/pentest-everything/everything/everything-active-
directory/persistence/adminsdholder

msDS-SupportedEncryptionTypes:

https://learn.microsoft.com/en-us/windows/win32/adschema/a-msds-
supportedencryptiontypes

https://techcommunity.microsoft.com/t5/core-infrastructure-and-security/decrypting-the-
selection-of-supported-kerberos-encryption-types/ba-p/1628797

msds-RevealOnDemandGroup:

https://eladshamir.com/2023/01/25/RODCs.html

gPCMachineExtensionNames:

https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-gpod/896f59a5-5b72-
4fb5-b1d4-8d007fdd6cb3

https://twitter.com/JimSycurity
https://twitter.com/GuhnooPlusLinux
https://www.thehacker.recipes/ad/movement/dacl
https://stackoverflow.com/questions/73107061/convert-datetime-in-a-command
https://www.youtube.com/watch?v=ExO535CITXs
https://specterops.io/wp-content/uploads/sites/3/2022/06/an_ace_up_the_sleeve.pdf
https://learn.microsoft.com/en-us/windows/security/threat-protection/auditing/event-4662
https://learn.microsoft.com/en-us/windows/security/threat-protection/auditing/event-4624
https://learn.microsoft.com/en-us/windows/security/threat-protection/auditing/event-5145
https://learn.microsoft.com/en-us/windows/security/threat-protection/auditing/event-4742
https://learn.microsoft.com/en-us/windows/security/threat-protection/auditing/event-4738
https://viperone.gitbook.io/pentest-everything/everything/everything-active-directory/persistence/adminsdholder
https://learn.microsoft.com/en-us/windows/win32/adschema/a-msds-supportedencryptiontypes
https://techcommunity.microsoft.com/t5/core-infrastructure-and-security/decrypting-the-selection-of-supported-kerberos-encryption-types/ba-p/1628797
https://eladshamir.com/2023/01/25/RODCs.html
https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-gpod/896f59a5-5b72-4fb5-b1d4-8d007fdd6cb3

31/31

https://www.trustedsec.com/blog/weaponizing-group-policy-objects-access/

https://community.spiceworks.com/topic/345202-tips-and-tricks-for-total-control-the-inner-
workings-of-group-policy

https://labs.withsecure.com/tools/sharpgpoabuse

https://sdmsoftware.com/security-related/sending-gpos-down-the-wrong-track-redirecting-
the-gpt/

gPC-File-Sys-Path:

https://specterops.io/wp-content/uploads/sites/3/2022/06/an_ace_up_the_sleeve.pdf

https://learn.microsoft.com/en-us/windows/win32/adschema/a-gpcfilesyspath

NTSecurityDescriptor:

https://learn.microsoft.com/en-us/windows/win32/adschema/a-ntsecuritydescriptor

https://github.com/ly4k/Certipy

https://learn.microsoft.com/en-us/windows/win32/secauthz/security-descriptor-string-format?
redirectedfrom=MSDN

https://www.rapid7.com/blog/post/2023/06/02/metasploit-weekly-wrap-up-12/

cACertificate:

https://decoder.cloud/2023/09/05/from-ntauthcertificates-to-silver-certificate/

https://learn.microsoft.com/en-us/windows/win32/adschema/a-cacertificate

https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-wcce/f1004c63-8508-
43b5-9b0b-ee7880183745

https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/certutil

primaryGroupID:

https://learn.microsoft.com/en-us/windows/win32/adschema/a-primarygroupid

https://www.qomplx.com/blog/primary-group-id-attacks/

https://dovestones.com/changing-primary-group-primarygroupid/

https://www.semperis.com/blog/how-attackers-can-use-primary-group-membership-for-
defense-evasion/

https://www.trustedsec.com/blog/weaponizing-group-policy-objects-access/
https://community.spiceworks.com/topic/345202-tips-and-tricks-for-total-control-the-inner-workings-of-group-policy
https://labs.withsecure.com/tools/sharpgpoabuse
https://sdmsoftware.com/security-related/sending-gpos-down-the-wrong-track-redirecting-the-gpt/
https://specterops.io/wp-content/uploads/sites/3/2022/06/an_ace_up_the_sleeve.pdf
https://learn.microsoft.com/en-us/windows/win32/adschema/a-gpcfilesyspath
https://learn.microsoft.com/en-us/windows/win32/adschema/a-ntsecuritydescriptor
https://github.com/ly4k/Certipy
https://learn.microsoft.com/en-us/windows/win32/secauthz/security-descriptor-string-format?redirectedfrom=MSDN
https://www.rapid7.com/blog/post/2023/06/02/metasploit-weekly-wrap-up-12/
https://decoder.cloud/2023/09/05/from-ntauthcertificates-to-silver-certificate/
https://learn.microsoft.com/en-us/windows/win32/adschema/a-cacertificate
https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-wcce/f1004c63-8508-43b5-9b0b-ee7880183745
https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/certutil
https://learn.microsoft.com/en-us/windows/win32/adschema/a-primarygroupid
https://www.qomplx.com/blog/primary-group-id-attacks/
https://dovestones.com/changing-primary-group-primarygroupid/
https://www.semperis.com/blog/how-attackers-can-use-primary-group-membership-for-defense-evasion/

