
1/8

0xEBFE

Fooled by Andromeda
0xebfe.net/blog/2013/03/30/fooled-by-andromeda

There is a malware with name “Andromeda”, that recently started to spread again.

Let’s listen to the experts from Trend Micro:

Full blog entry

Hm, it is strange behavior for mass-spreading malware, isn’t it? Someone should explain

what’s really going on - and this “someone” will be me :)

Andromeda has several anti-debugging or anti-reversing tricks:

http://www.0xebfe.net/blog/2013/03/30/fooled-by-andromeda/
http://blog.trendmicro.com/trendlabs-security-intelligence/andromeda-botnet-resurfaces/

2/8

It checks the names of processes by comparing CRC32-hashes:

It checks for Sandboxie dll:

3/8

It checks “0”-value in registry key

HKLM\SYSTEM\CurrentControlSet\Services\Disk\Enum for “vmwa”, “vbox”,

“qemu”-strings. Obviously, this is an anti-vm trick:

And finally it checks the elapsed time between “rdtsc”-instructions:

Passing all these checks makes Andromeda avoid address 0x00401E8C, where an

ACCESS_VIOLATION exception would occur. If some anti-reversing checks pass, the

payload is loaded at 0x402413.

This is what the Andromeda payload header structure looks like:

4/8

payload_header.cpp

#pragma pack(push, 1)
typedef struct _ANDROMEDA_PAYLOAD
{
 BYTE rc4Key[16]; // 0x000
 DWORD encryptedSize; // 0x010
 DWORD unknown; // 0x014 probably
CRC32
 DWORD unpackedSize; // 0x018
 DWORD offsetEntryPoint; // 0x01C
 DWORD offsetRelocAndImport; // 0x020
 DWORD relocsAndImportSize; // 0x024
 BYTE encryptedPayload[]; // 0x028
} ANDROMEDA_PAYLOAD;
#pragma pack(pop, 1)

This is the header of default-payload at 0x402413 address:

Andromeda uses RC4 for decryption and aPLib-library for decompression. I made an

IDAPython script that decrypts the payload and recovers the relocations and imports. My

script is based on the great kabopan scripts by Ange Albertini.

You can find my script here: https://github.com/0xEBFE/Andromeda-payload

I decrypted the payload at 0x402413 and it does several operations:

http://code.google.com/p/kabopan/
https://twitter.com/angealbertini
https://github.com/0xEBFE/Andromeda-payload

5/8

Copies itself to %ALLUSERSPROFILE%\svchost.exe

Writes itself to “SOFTWARE\Microsoft\Windows\CurrentVersion\Run” registry key as

“SunJavaUpdateSched”.

And also (sorry for the big picture, but you have to see this):

6/8

7/8

In this screenshot you can see that Andromeda:

Opens port 8000 — ✔ check :)

Runs new instance of “cmd.exe” — ✔ check :)

It does not have any code to process commands from remote computer, but since standard

handles (StdInput and StdOutput) are redirected to socket it’s possible to execute commands

remotely. Obviously it’s a fake payload - someone got fooled :)

Let’s check the SEH-handler of Andromeda:

As you can see Andromeda basically changes execution flow when an exception occurs at the

specified address Andromeda passes the execution flow to the “load_payload”-function

with address 0x00402058 as argument. In this real payload, the malware injects itself to

“msiexec.exe” or “svchost.exe”.

If you check more closely you can spot a third payload that runs in “msiexec.exe” or

“svchost.exe”:

8/8

This payload contains the C&C url. However this url is also a fake, thanks to @aaSSfxxx for

pointing me out.

You might ask the question: “How do cyberterrorists test their cyberweapons if it’s not

possible to run them in Virtual Machines?”. And the answer is:

Andromeda checks the CRC32 of the %SYSTEMDRIVE% volume name, and if equal to

0x20C7DD84 (for example “CKF81X”), the real payload is executed.

Thanks to this great forum for supplying the sample: http://www.kernelmode.info/

MD5-hash of analyzed sample: 2C1A7509B389858310FFBC72EE64D501

https://twitter.com/aaSSfxxx
http://www.kernelmode.info/

