
1/4

Joshua Cannell July 25, 2013

ZeroAccess uses Self-Debugging
blog.malwarebytes.com/threat-analysis/2013/07/zeroaccess-anti-debug-uses-debugger/

Debuggers—a tool traditionally used to find errors (called “bugs”) in code—are also used by
security experts. In the field of malware analysis, debuggers are a vital tool used to reverse-
engineer malware binaries, helping analysts to understand the purpose and functionality of
malware when dynamic analysis isn’t enough.

Because they’re such a valuable tool, sometimes malware authors try to prevent analysts from
using them. By employing various techniques in the code (known as “anti-debugging”), malware
can successfully thwart junior analysts.

Recently I found an interesting anti-debugging technique I haven’t seen before. I discovered this
technique while reversing a ZeroAccess Trojan (seems it’s always ZeroAccess lately, right?).

The technique employs various native Win32 APIs used for debugging a process. By using
these APIs, the analyst cannot use their own debugger, since only one debugger can be
attached to a process at a time.

To connect to the debugger at the API level, the Trojan uses DbgUIConnectToDbg. This API
along with others used to communicate with the Windows Debugger all seem to be
undocumented by Microsoft.

Next the Trojan creates a child process using the calling EXE (new-sirefef.exe). This was not
surprising, as malware usually does this while unpacking. Allow me to explain.

https://blog.malwarebytes.com/threat-analysis/2013/07/zeroaccess-anti-debug-uses-debugger/
http://en.wikipedia.org/wiki/Debugging#Anti-debugging

2/4

Typically, a parent process creates a suspended child process using the calling EXE. Afterward,
the parent will de-obfuscate some code and then place it in the child. Whenever this is
complete, the parent makes a call to execute the child (usually with ResumeThread), which is
now completely different from the calling EXE. And thus, while you have two processes that
appear identical, they are completely different when viewed internally.

This sample doesn’t quite work this way. Under the creation flags parameter for the
CreateProcess function, the CREATE_SUSPENDED flag was not being used, but instead the
DEBUG_PROCESS flag. There was also another used, called
CREATE_PRESERVE_CODE_AUTHZ_LEVEL (Note: for a list of process creation flags, click
here).

Now both the parent and child process are being debugged, which means we can’t attach an
additional debugger to either. This complicates matters as the debugger is the primary tool we
use to step through code.

However, we can still observe what’s happening statically using our IDA dump. The parent
process appears to handle debug event codes and performs an action for each event (for a list
of all codes, see here). After an event has been processed the Trojan continues debugging and
receives another event using DbgUiContinue.

https://www.google.com/search?q=CREATE_PRESERVE_CODE_AUTHZ_LEVEL&oq=CREATE_PRESERVE_CODE_AUTHZ_LEVEL&aqs=chrome.0.69i57j69i61j69i62l3.847j0&sourceid=chrome&ie=UTF-8
http://msdn.microsoft.com/en-us/library/windows/desktop/ms679308(v=vs.85).aspx

3/4

When an EXCEPTION_DEBUG_EVENT code is received, the Trojan enters a function that
decrypts a PE DLL file to the heap. The new PE is then placed into the memory space of the
child process.

The new PE file is actually the final unpacked version of the rootkit. We can dump the memory
from here and load it into IDA to perform some static analysis. Looks like we have some
websites in plain-text the Trojan is going to contact, possibly to locate the infected user
(geoip_country_code).

This is just another example of how malware authors attempt to prevent reverse-engineering of
their code with anti-debugging. In this example, however, the ZeroAccess Trojan does not allow
the analyst to use their own debugger by connecting to the Windows Debugger itself. All in all I
think it’s a very interesting technique, and we’re sure to see more of it in the future.

4/4

Joshua Cannell is a Malware Intelligence Analyst at Malwarebytes where he performs research
and in-depth analysis on current malware threats. He has over 5 years of experience working
with US defense intelligence agencies where he analyzed malware and developed defense
strategies through reverse engineering techniques. His articles on the Unpacked blog feature
the latest news in malware as well as full-length technical analysis. Follow him on
Twitter @joshcannell

http://blog.malwarebytes.org/author/jcannell/
https://twitter.com/joshcannell

