
1/12

BE2 extraordinary plugins, Siemens targeting, dev fails
securelist.com/be2-extraordinary-plugins-siemens-targeting-dev-fails/68838/

Our November post introducing our BlackEnergy2 (BE2) research described new findings on
the group’s activity. We presented both details on their plugins and significant findings about
some of their targets and victims. In this post, let’s examine several additional plugins more
closely, targeting details around BE2 Siemens exploitation, and some of their unusual coding
failures.

We previously introduced an unknown set of plugins and functionality for the linux platform,
six in total. For the windows platform, we collected 17 plugins. The last post noted the
difficulty in collecting on this group. We finish descriptions for our set in this post.

bs
 cert

 dstr
 fs

 grc
 jn

 kl
 prx

 ps
 rd
 scan

https://securelist.com/be2-extraordinary-plugins-siemens-targeting-dev-fails/68838/
https://securelist.com/be2-custom-plugins-router-abuse-and-target-profiles/67353/

2/12

sn
ss
tv
upd
usb
vsnet

We also collected plugins for the MIPS/ARM architectures, as noted in the previous BE2
post.

weap
ps
nm
snif
hook
uper

Extraordinary Functionality

Let’s first examine some of the newest and most surprising Windows plugins. It’s interesting
that all of these plugins use a custom “FindByHash” function to evade detection schemes
and to slow analysis…

The “Destroy” plugin, dstr

Name dstr.dll

MD5 8a0a9166cd1bc665d965575d32dfa972

Type Win32 DLL

Size 26,474 bytes

CompiledOn 2014.06.17 08:42:43

The most troubling plugin in the list is the “dstr” plugin. It is a Windows-only plugin. It was
used to overwrite data by the BE2 actor, destroying data stored on hard drives by overwriting
file contents. While its use may be intended to cover their tracks, it is heavy handed to use
this type of tool to cover one’s tracks in a network. Most likely it is a tool of sabotage, much
like the Destover wiper seen on Sony Pictures Entertainment’s networks. However, it’s
interesting that the BE2 developers created wiper code different from the Destover and
Shamoon wiper malware we saw in the Saudi Aramco and SPE attacks. Instead of re-using
the commercial EldoS RawDisk drivers in their malware, the BE2 developers wrote their own
low-level disk and file destruction routines. It’s also a much more chilling deployment of
wipers – instead of a poorly defended media studio, it was delivered to ICS environments.

3/12

In order to overwrite stored data on all Windows versions, the dstr plugin supports both user-
mode and kernel-mode wiper functionality, which is somewhat surprising. The component
maintains both an embedded win32 library and win64 driver modules for its kernel mode
functionality. They are rc4 encrypted.

User-mode functionality

The plugin identifies device id’s for the system’s HDD and creates a handle to the system’s
physical drive, with “GENERIC_READ or GENERIC_WRITE” access. Several calls to
DeviceIoControl collects data on the physical location of the volume, and the size and
properties of this disk. It uses DeviceIoControl with the
IOCTL_DISK_GET_DRIVE_GEOMETRY control code in order to retrieve Bytes Per Sector
value. dstr then wipes out all open handles to the disk by dismounting it with the
FSCTL_DISMOUNT_VOLUME control code.

This routine prepares the system for overwrite and ensures no conflicts for plugin file I/O.
Then it makes multiple WriteFile calls to write a zeroed out buffer to disk.

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2015/02/08064259/usermode_wiper.png

4/12

The dstr plugin maintains code for unlocking and deleting the BE2 driver from disk, furthering
the group’s goal of keeping their traces hidden from researchers. And notice the FindByHash
set of calls above, this sfc_os call disables Windows File Protection for a minute while an
application can delete or modify the locked file. So this plugin and its call can proceed and
delete the driver.

The plugin looks over all the services in the %system32%\drivers folder and checks the write
permission. If access is provided, it unlocks the file, rewrites the embedded driver under the
existing driver name and launches it.

Drivers and kernel mode functionality

Decrypted 32-bit driver

Name driver.sys

MD5 c4426555b1f04ea7f2e71cf18b0e5b6c

Type Win32 driver

Size 5,120 bytes

CompiledOn 2014.06.10 13:12:22 GMT

Decrypted 64-bit driver

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2015/02/08064255/sfc_kill.png

5/12

Name driver.sys

MD5 2cde6f8423e5c01da27316a9d1fe8510

Type Win64 driver

Size 9,136 bytes

CompiledOn 2014.06.10 13:12:04 GMT

The 32-bit and 64-bit drivers are identical and compiled from the same source code. These
small Windows drivers are supposed to support FAT32 and NTFS file systems, and contain
two large code implementation mistakes. In spite of these flaws, it is clear that the author’s
goal was to parse a file system and then write random data across files.

Extraordinary Fails

These coding fails are unique to this dstr plugin, suggesting a development team effort
behind the plugin set code.

Fail #1: The authors reversed the routines for FAT32 and NTFS data wiping when checking
the presence of the “FAT32” string in the first 1024-bytes of the system drive.

Fail #2: In the FAT32 routine the Root Directory Sector Number is calculated and is dealt as
the absolute offset inside the file rather than next multiplying this number by the bytes per
sector

In comparison, there is no such mistake in the NTFS routine and the calculation of the MFT
offset is implemented properly:

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2015/02/08064251/FAT32_flaw.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2015/02/08064246/Bootsector_FAIL.png

6/12

Goal – File Content Corruption

Apart from that, it is interesting that the authors implement NTFS wiping in an unusual way
with strange logic compared to FAT32 ‘straightforward’ wiping. The plugin accomplishes
checks for FILE records and at first skips them. Then under certain conditions it rewrites non-
FILE record sectors with random buffer which probably corresponds to some file contents
and proceeds looping. Then it ends up rewriting the first sectors of MFT and MFT mirror.

grc, plus.google.com replacement communications plugin

Name grc.dll

MD5 ee735c244a22b4308ea5d36afee026ab

Type Win32 DLL

Size 15,873 bytes

CompiledOn 2013.09.25 07:19:31

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2015/02/08064242/Comparison.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2015/02/08064237/GOALFileCorruption.png

7/12

This plugin creates a backup communications channel to yet another legitimate service. Most
likely this backup channel is used to cloak outbound communications on monitored networks.
We have seen APT using everything from Twitter to Google Docs to hide communications in
plain sight, and this time the abused service is Google Plus.

This plugin implements the standard Windows HTTP services to interact with Google Plus
over https, seeking to find a png file.

The plugin is provided with a specific Google Plus id to connect with, and uses the OLE
stream Windows structured storage API along with the GDI+ bitmap functions to handle and
parse this png file. This png file content is actually encrypted data containing the new BE
configuration file just as it was obtained using ‘normal’ C&C communication. It is encrypted
with RC4, just like the embedded dstr drivers. But unlike to the ‘typical’ RC4 BE decryption
scheme that uses RC4 once, here it uses RC4 three times: once with hardcoded key found
in the grc binary, the second time using the key extracted from the previous decrypted result,
and the third time using the ‘id’ machine’s identifier that is normally served as the encryption
key during the C&C communication.

Universal serial bus data collection plugin, usb

Name usb.dll

MD5 0d4de21a2140f0ca3670e406c4a3b6a9

Type Win32 DLL

Size 34,816 bytes

CompiledOn 2014.03.21 07:02:48

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2015/02/08064233/grc.png

8/12

The usb plugin collects all available information on connected USB drives, and writes out all
of these details to a text file, packs it, provides to the main BlackEnergy code, which
communicates to a c2.

It uses multiple api calls to collect information on multiple types of connected usb storage
devices. It enumerates all usb storage devices connected to the system and retrieves data
from all, including SCSI mass storage devices. And, most interestingly, it may be the first
implementation of BadUSB-related techniques in APT re-purposed COTS malware that we
have seen in the wild.

The code queries scsi devices directly and sends them two types of SCSI commands. The
first command with the opcode 0x1A which corresponds to MODE SENSE may result just in
the logging of the failed call (‘SendSCSICommand return false’ message).

The second type of SCSI command remains mysterious. It uses undefined opcode 0xf0 and
there is no direct evidence of its purpose as it is stated to be vendor specific. This mysterious
opcode is referenced around the same time frame of the plugin development in BadUSB
offensive research
http://algorithmics.bu.edu/twiki/bin/view/EC521/SectionA1/Group5FinalReport. Here, it is
noticed in the USB traffic generated by an SMI controller tool. To be specific, there are two
calls with the opcode 0xf0 in the code, each passed its own parameters. One of the
parameters, 0x2A, is mentioned in the paper to return the string containing the firmware
version, NAND flash ID, and controller part number. But this returned information is not
logged anywhere.

http://algorithmics.bu.edu/twiki/bin/view/EC521/SectionA1/Group5FinalReport
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2015/02/08064229/Usb.png

9/12

Also the code loops to retrieve detailed physical data about every attached storage device:

number of cylinders
media type (floppy, fixed hard drive, removable media, etc)
number of tracks per cylinder
sectors per track
number of bytes per sector
physical disk size in bytes
Device Instance ID

Motherboard and firmware data collection plugin, bios

Name bs.dll

MD5 4747376b00a5dd2a787ba4e926f901f4

Type Win32 DLL

Size 210,432 bytes

CompiledOn 2014.07.29 00:40:53

The bios plugin gathers low level host system information:

BIOS
motherboard
processor
OS

It uses several techniques to gather this information:

WMI
CPUID
win32 api

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2015/02/08064225/Usb2.png

10/12

As a Windows Management Instrumentation (WMI) client application, it initializes COM and
connects to the \\root\cimv2 namespace to use the IWbemServices pointer and make WMI
requests. The code executes wql queries (“wql” is “sql for wmi”, a subset of sql) to gather
victim host details, like the query “SELECT Description, Manufacturer, Name, ProcessorId
FROM Win32_Processor”. Here are several queries from the BlackEnergy2 plugin code:

SELECT Description, Manufacturer, Name, ProcessorId FROM Win32_Processor
SELECT Product, Manufacturer, Version FROM Win32_BaseBoard
SELECT Name, OSArchitecture, Version, BuildNumber FROM
Win32_OperatingSystem
SELECT SerialNumber, Description, Manufacturer, SMBIOSBIOSVersion FROM
Win32_BIOS

These wql calls provide the attacker with the data like the lines below:

Description=Intel64 Family 6 Model 60 Stepping 3
Manufacturer=GenuineIntel
Name=Intel(R) Core(TM) i7-4710MQ CPU @ 2.50GHz
ProcessorId=1FEAFBCF000116A9

Product=7MPXM1
Manufacturer=AsusTek
Version=??

Name=Microsoft Windows 8.1 Pro
OSArchitecture=64-bit
Version=6.3.9600
BuildNumber=9600

SerialNumber=7DTLG45
Description=A12
Manufacturer=AsusTek
SMBIOSBIOSVersion=A12

This selectivity is fairly usual. And the plugin does not modify its own behavior based the
collected values. What can we infer about the selection of only these values, as they are only
being collected and sent back to the attackers? Here are some possibilities:

the attackers want to evade sandbox and honeypot/decoy environments, and use this
collected data to id the host system.

11/12

the attackers have prior knowledge of the environment they are attempting to
penetrate, down to the equipment make. Or, they have an idea of the types of
hardware they would expect or want to see. In ICS and SCADA environments, these
details could be very valuable for an attacker setting up shop. These details could aid
in establishing persistence, evaluating true resource capacity and capabilities, tracking
down the source of the equipment, or aiding further lateral movement
the attackers know nothing about the network they are penetrating. They are collecting
this information to better understand where this plugin really is running in the victim
environment and planning their next moves

When using standard win32 api, the application implements calls to retrieve information on
system locales. Oddly, there is special handling for one nordic locale in this particular plugin,
“Norwegian-Nynorsk”.

The CPU data collection functionality first calls the Intel cpuid instruction directly. It also
directly handles multi-cpu systems and each of their feature sets. This SMP support is hard
coded into the plugin.

Additional BE2 Siemens Exploitation Details

Targeting details for BE2 actor events are interesting. When focusing on research sites and
energy engineering facilities, the group remotely exploited Siemens’ Simatic WinCC
systems. In these events, the attackers attempted to force the ccprojectmgr.exe process to
download and execute a specific BlackEnergy2 payload. Let’s examine a couple of example
targets here. Based on the different delays for return, the attacks were possibly not
automated.

Target A:

The first exploit attempt ksn recorded was March 2014. The attackers returned with a second
failed attempt to exploit that same research system on April 2014, approximately 30 days, 2
hours later.

Target B:

The BE2 actor then attacked a new target system in May 2014 and failed, and returned with
an exploit attempt on that same system in July 2014.

So it looks like there may be a timing cycle to their visits, but the volumes here are too low to
be significant.

In all four of these attempts on two different targets, the attackers tried to download their
payload from hxxp://94.185.85(dot)122/favicon.ico. The payload changed slightly from March
2014 to the very end of July 2014, presenting the following md5(s). All of these droppers are
BE2 malware, modify an existing kernel driver service like “ACPIEC” and start it to load the

12/12

BE2 kernel module. Note that the attackers planned on re-using the same c2 for the first
target, but changed the callback c2 for the second target. None of these components are
signed:

fda6f18cf72e479570e8205b0103a0d3 → drops df84ff928709401c8ad44f322ec91392,
driver, debug string:”xxxxxxxx.pdb”. C2: 144.76.119.48 (DE, Hetzner Online AG, AS24940)

fe6295c647e40f8481a16a14c1dfb222 → drops 39835e790f8d9421d0a6279398bb76dc,
driver, debug string:”xxxxxxxx.pdb”. C2: 144.76.119.48 (DE, Hetzner Online AG, AS24940)

ac1a265be63be7122b94c63aabcc9a66 → drops b973daa1510b6d8e4adea3fb7af05870,
driver. C2: 95.143.193.131 (SE, Internetport Sweden AB, AS49770)

8e42fd3f9d5aac43d69ca740feb38f97 → drops f4b9eb3ddcab6fd5d88d188bc682d21d,
driver. C2: 46.165.222.6 (DE, Leaseweb Germany GmbH, AS16265)

