
1/17

VB2014 paper: The pluginer - Caphaw
virusbulletin.com/virusbulletin/2015/02/paper-pluginer-caphaw

2015-02-27

Micky Pun

Fortinet, Canada

Neo Tan

Fortinet, Canada Editor: Martijn Grooten
Abstract

Caphaw, also known as Shylock, has been a quiet, yet persistent player on the botnet scene since 2011. It stands in great contrast to
most botnet malware in that it was released with complete functionality rather than being released into the wild while still in the testing
phase. The bold nature of the campaign (an easily identifiable entry point code sequence) was backed up by Caphaw’s intricately
designed code structure which made it hard for analysts to create a complete profile of its malicious behaviour with various obfuscation
and anti-sandbox techniques. In their VB2014 paper, Micky Pun and Neo Tan discuss the technical aspects of handling the anti-
reversing strategies devised by the malware writer and evaluate how Caphaw could become a permanent fixture in the botnet scene in
the future.

Abstract

Often identified by its abilities to spread through Skype and inject bank pages, Caphaw, also known as Shylock, has been a quiet, yet
persistent player on the botnet scene since 2011. Caphaw is a rare kind of botnet in that it was released with complete functionality. It
stands in great contrast to most botnet malware that is released into the wild while still in the testing phase. The bold nature of the
campaign (an easily identifiable entry point code sequence) was backed up by Caphaw’s intricately designed code structure which
made it hard for analysts to create a complete profile of its malicious behaviour with various obfuscation and anti-sandbox techniques.
In this article, we will discuss the technical aspects of handling the anti reversing strategies devised by the malware writer and evaluate
how Caphaw could become a permanent fixture in the botnet scene in the future.

Brief history of Caphaw

Our research team first received a sample of Caphaw in late October 2011. In this version, the Caphaw client was extracted from the
.data section of a companion memory injector and written into the memory of explorer.exe. Since every Caphaw sample includes its
build version in order to identify itself to different instances through a named pipe, we have been able to build up a decent picture of
major developmental milestones (see Figure 1).

Figure 1. Caphaw version timeline.

(Click here to view a larger version of Figure 1.)

The 1.0.x versions of Caphaw client consisted only of master mode and slave mode. Some of the modules, namely backsocket and
dllhook, were bundled together with the Caphaw client in the custom packer. Some other capabilities, such as VNC and archiver, could
be downloaded from the Internet later, after the configuration files enabled them. Most of the strings were not encrypted, hence they
were visible after unpacking.

In the 1.4.1 version, the memory injector was combined into the Caphaw client, hence the malware also needed to handle the situation
when the Caphaw DLL client was not invoked by a memory injector. It also added anti-VM and anti-debug mechanisms so that the
malicious payload would not trigger if it detected that it was running in a sandbox or debugging environment. Plug-ins were also
introduced in this version to remove the limitations of the original ‘modules’ system. The introduction of plug ins provided a more

https://www.virusbulletin.com/virusbulletin/2015/02/paper-pluginer-caphaw
https://www.virusbulletin.com/uploads/images/figures/2015/02/PunTan-1-large.jpg

2/17

convenient way to introduce new functionalities and standardize communication with the master between different modules. In addition,
the malware author created a test mode in order for the developer to be able to test the module and plug-in after download without
being bothered by the newly added anti-VM and anti-debugging features.

Caphaw showed signs of stability when version 1.7.x was introduced in February 2013. No major structural changes were made at this
point. Even later, in version 1.8.x, there were only slight changes to the traffic data pattern and additional code obfuscation. One
obvious change in this version was the improvement to the custom encryption method of strings to eliminate wasted spaces (four zero
bytes) at each encrypted string.

Other than modifications to Caphaw which allow it to run more stably on an infected host, some small changes can be seen in its
configuration parsing through different versions. Some older features (e.g. /hijackcfg/backconnect, /hijackcfg/oskill) have become
obsolete in later versions, while new features (e.g. /hijackcfg/upload_file, /hijackcfg /grabemails/, /hijackcfg/upload_file) have been
added in newer clients. Detailed information on the available configuration in different versions is listed in Appendix 2.

Basic features

The Caphaw client is a DLL which can easily be identified by its entry point code where it checks the fdwReason parameter. The earlier
version of Caphaw was packed in a memory injector, so it would only continue to execute the malicious DLL if it recognized itself being
loaded into the virtual memory space by the LoadLibrary API. In the later versions, Caphaw used a more advanced custom packer and
integrated the memory injected into the DLL client. The entry point of the DLL client reflects the fact that the malware is also capable of
being a standalone memory injecting payload based on the fdwReason value.

Newer versions of Caphaw have been improving their condition checking so that malicious behaviour is not launched in unintended
environments. The main idea of the payload starts with setting up named pipes for inter-process communication, paving the way for a
multi-thread system operating the client. The older versions consist only of a master mode and a slave mode, where the master (shown
in Figure 2) is responsible for communication with the C&C server while interacting with the slaves to run tasks that are enabled by the
configuration file. Later versions also introduced ‘plug-ins’, which have standardized communication with the master, making plug-ins
compatible with different versions of the master.

Figure 2. Caphaw overview.

(Click here to view a larger version of Figure 2.)

Prior to launching the master, Caphaw will determine whether it has been injected into to a specific browser (‘iexplore.exe’ or
‘firefox.exe’). On hooking a recognized browser, it starts individual threads on the master to cover four areas of C&C server
communication:

1. Pinging the C&C server

2. Sending back computer information

3. Downloading and parsing the configuration file and carrying out tasks

4. Logging (errors or master, slave, plug-in messages).

Information sent to the C&C server is encrypted with RC4 using a key (known as ID here) generated based on the host’s environment.
Then all of the traffic is encapsulated with the SSL protocol. A few default C&C server domains are included in the code and the
malware uses a special generator to create a subnet name assuming that the DNS server will respond with an active C&C server IP

https://www.virusbulletin.com/uploads/images/figures/2015/02/PunTan-2-large.jpg

3/17

address. When the right condition is reached on the server side, the C&C server will send back a configuration file encrypted with
base64 and RC4 using the unique ID mentioned previously as the key.

Information collection

To encrypt the data that is sent, the malware author uses a custom algorithm to create a unique identification number. The algorithm
can be described as follows:

Data = CustomHashingCpuid [8 bytes] + VolumeSerialNumber [4 bytes] + ComputerName [? Bytes] + SecurityIdentifier [? Bytes]

ID = CustomOrderSwapping(MD5sum(Data))

Since executing cpuid with different values stored in EAX yields different results, the malware author devised a wise plan to hash
important information into eight bytes – see Listing 1.

Func CustomHashingCpuid
For (i = 0 to 1): ;Get vendor ID and Processor Info and Feature Bits
CPUID(i)
Result[0..3] ^= eax

If i == 1:
Ebx &= 0xFFFFFFh //store with processor’s additional feature info
Result[0..3] ^= ebx
Result[4..8] ^= ecx
Result[4..8] ^= edx

For (i = 0x80000002h to 0x80000004h): ;Processor Brand String
CPUID(i)
Result[0..3] ^= eax
Result[0..3] ^= ebx
Result[4..8] ^= ecx
Result[4..8] ^= edx

return Result

Listing 1: The malware author devised a wise plan to hash important information into eight bytes.

The malware uses the unique ID to encrypt the other information sent to the C&C server. Table 1 depicts the parameters and their
request values (e.g.
key=a323e7d52d&id=012F789B3884E1400F7F5D954521F85B&inst=master&net=usa&cmd=cfg&time=2013.05.15+08%3a02%3a29.421).

Parameter
Length
(bytes) Description

key 5 Using a custom algorithm to render a five-byte number from a hard-coded number in the malware
binary

id 32 Unique ID generated based on the infected host’s information
Also used as RC4 key

inst 5-8 Installation type which affects how the client parses and executes the downloaded file
1. master

2. slave

3. pluginer

net N/A Hard-coded botnet name

cmd 3-4 Command
1. log

2. ping

3. cfg

4/17

Parameter
Length
(bytes) Description

w N/A Message type
1. fileupload

2. cmpinfo

3. sols

4. rqt

bt 23 Build time (hard coded)

version 11 Build version (hard coded)

time 23 Current time

jt N/A Job time (in seconds)
Current time minus initial infection time

Table 1. Information sent back to the C&C server.

The key is generated using the following algorithm:

Byte input[4] = hard-coded_value;
temp = sprintf(‘%u%u%u%u’,input[0],input[1], input[2], input[3]);
temp = lldiv(temp , 0x3) // long unsigned division
temp = sprint(‘%I64u’,atoi64(temp))
temp = md5sum(temp)
temp = md5sum(temp[0..9])
result = temp[0-4]

The hard-coded value for generating the key is the build time of the malware.

The malware will also generate a detailed report on the victim’s computer if the client determines that this is the first time the malware
has run on the machine. The report will be encrypted slightly more simply than the other communications and sent back to the server
with the command ‘cmd=log&w=cmpinfo’. This contains extended details of the infected host. The list is surprisingly thorough; we will
list just some of the more interesting parts:

OS version, serial and CDKey

CPU, RAM information

File system structure and available space

Computer name, user name and privileges

Code pages – Windows character encoding

Browser version

List of anti-malware products (the relationships between the anti-malware value and the process names are shown in Appendix 1)

Whether it is running in a virtual machine

Certain local executable file information, including: userinit.exe, cftmon.exe, vsdrv.exe, etc.

List of running services

List of running processes

List of installed programs

Snapshots of register values (EAX, EBX, ECX, EDX)

Figure 3 shows an example of the report. As you can see, AntiMalware=VMware here, since the bot considers the sandbox technique
to be a kind of anti-virus method. Besides looking for a sandbox environment, it also scans through every current process to find
matches of other anti-virus products. A complete list is shown in Appendix 1.

5/17

Figure 3. A small fraction of the initial report.

The purpose of this is obviously to draw a detailed description of the victim for more precise or tailored payloads/plug-ins to attack.

After the initial report, it also tries to search for a bitcoin wallet in some known directories and upload it using w=rqt if it finds one. This
attack can only affect an unprotected wallet file, since it doesn’t check whether the file is encrypted or not.

Anti-debug/analysis tricks

The following strategy is employed to obstruct reverse engineering of the malware:

1. Caphaw has demonstrated an effective technique of obstructing static analysis by encrypting strings such as library names and
condition constants using a custom encryption routine and encoding API names using their hashing values. With a low probability
of collision on string name hashes, the API call addresses can easily be retrieved by generating the hash of each API name in the
import table and retrieving the API call address when a match is found. This method can avoid revealing the API name strings.
Besides, with all other critical string information encrypted, the analyst can only predict the function of the routines by looking at
the numeric values and call follows, thus, static analysis is nearly impossible (see Figure 4).

Figure 4. Code snippet showing how the API is resolved by using its hash value.

(Click here to view a larger version of Figure 4.)

https://www.virusbulletin.com/uploads/images/figures/2015/02/PunTan-4-large.jpg

6/17

2. Table 2 depicts the tests the malware uses to detect virtual machine (VM) environments. For example, by iterating the full module
name path returned by the ZwQuerySystemInformation API, it can detect a VM environment by detecting the existence of a
known hash of a known VM filename (such as vmscsi.sys) with the hashes of all module names. If a sandbox environment is
detected, the malware will delete itself and exit the process.

Targeted
virtual
environment Detection method

VMware

 Test 1: (system module check)

 Use the ZwQuerySystemInformation API to obtain a list of system modules. Iterate through the list and
attempt to match the hash of the system module with the hash of any of the following strings:

vmhgfs.sys

vmx_svga.sys

vmxnet.sys

vmmouse.sys

vmscsi.sys

vmdebug.sys

 Test 2: (running process check)

 Match the hash of a running process with the hash of the following strings:
vmwarerray.exe

vmwareuser.exe

 Test 3: (registry value check)

 Check if any of the following registry entries exist and contain the string ‘VMware’ at ‘SystemProductName’
and ‘SystemManufacturer’:

HARDWARE\DESCRIPTION\System\BIOS

SYSTEM\ControlSet001\Control\SystemInformation

Virtual Box

 Test 1: (system module check)

 Use the ZwQuerySystemInformation API to obtain a list of system modules. Iterate through the list and
attempt to match the hash of the system module with the hash of any of the following strings:

vboxvideo.sys

vbocsf.sys

vboxdisp.dll

vboxmouse.sys

vboxguest.sys

 Test 2: (running process check)

 Match the hash of a running process with the hash of the following strings:
vboxservice.exe

vboxtray.exe

 Test 3: (registry value check)

7/17

Targeted
virtual
environment Detection method

 Check if any of the following registry entries exist and contain the string ‘VirtualBox’ at ‘BIOVersion’ and
‘SystemManufacturer’:

SYSTEM\ControlSet001\Control\SystemInformation

Virtual PC

 Test 1: (system module check)

 Match the hash of a running process with the hash of the following string:
vmsrvc.exe

vpcmap.exe

Table 2. Sandbox detection methods.

3. Unlike most malware, Caphaw has dedicated a huge amount of code to condition checking to ensure that the payload is deployed
under the exact conditions intended. Buried in a massive amount of obfuscated code, recovering all the capabilities of this
malware is rather time consuming and could easily be missed.

In the process of reversing the code, we discovered that the author had left a few backdoors open for testing the malware. When
executing the malicious routine with these special arguments, it will execute the client in different modes. The malware will first check if
the local time is within two hours of the malware build time. If this is the case, it will go further and check whether the ‘-testing’ and ‘-vm’
arguments are provided in the command. If these conditions are met accordingly, the malware will not release any payload, or trigger
the anti-VM detection routine.

Figure 5. The malware compares the difference between the current time and the build time to two hours (7,200 seconds).

(Click here to view a larger version of Figure 5.)

Communication with C&C Server

https://www.virusbulletin.com/uploads/images/figures/2015/02/PunTan-5-large.jpg

8/17

The initial list of C&C server domains is encrypted in the binary. However, Caphaw uses a special technique to hide the active server
IPs. The life of the domains is usually very short – it usually ranges from a couple of hours to one or two days – and on the client side, it
generates the full server domains and request URLs by using the hard-coded ones in the following format: [random generated prefix].
[hard-coded domain]?r=[random number]. All of the communication traffic goes through C&C server port 443 using the SSL protocol.

The pseudocode of the sub domain name generation is as follows:

CHAR_TABLE = {abcdefghijklmnopqrstuvwxyz0123456789};
while (char_count != 0)
{
 generated_sname += CHAR_TABLE[calcRandom(0x24)];
 char_count --;
}
int calcRandom(int char_count_max)//generates random number under char_count_max
{
 v1 = randomDGASeed;
 if (!randomDGASeed)
 v1 = gettickcount();
 randomDGASeed = 214013 * v1 + 2531011;
 return ((randomDGASeed >> 16) & 32767) / 32767.0 * char_count_max;
}

The char_count is also generated randomly using the calcRandom() function with char_count_max obtained from the following function
with a fixed argument: a1 = 0xC and a2=0x32. Therefore, char_count_max is constrained between 0xC and 0x12.

int generateCharCount (int a1, int a2)
{
 return calcRandom(2 * a2 * a1 / 100) + a1 * (100 - a2) / 100;
}

The thread responsible for communicating keeps generating domain names and querying them until it gets a response (see Figure 6).

Figure 6. Retrying generated URLs.

(Click here to view a larger version of Figure 6.)

Then it sends the message to the response IP address in SSL protocol. A sample message in plaintext is as follows:

key=a323e7d52d&id=012F789B3884E1400F7F5D954521F85B&inst=master&net=usa&cmd=cfg&time=2013.05.15+08%3a02%3a29.421

It is then encrypted using RC4 algorithm with the key being the domain it was querying appended to the fixed string ‘ca5f2abe’ (e.g.
‘bzdfv2bjw791h.e-protections.suca5f2abe’). However, in the current version, the initial report is encrypted using a different RC4 key
generated by a simpler format which appends a hard-coded string to the C&C IP address (e.g. ‘189.127.48.11bzdfv2bjw791h’). Then it
is encoded with base64, and posted to the server with ‘z=’ in front of the encoded message. If the ‘cmd’ variable is equal to ‘cfg’, the
C&C server will send back the base64 result of the configuration message, subsequently encrypted by RC4 algorithm with a different
key. The key is the string of the ‘id’ value generated on the victim’s environment. After decryption, the configuration is in XML format.
Listing 2 shows a sample configuration.

https://www.virusbulletin.com/uploads/images/figures/2015/02/PunTan-6-large.jpg

9/17

<hijackcfg>
<botnet name=”15aug”/>
<timer_cfg success=”1200”faail=”1200”/>
<timer_log success=”600”fail=”600”/>
<timer_ping success=”1200”fail=”1200”/>
<urls_server>
<url_server url=”https://sysinfonet.cc/ping.html”/>
<url_server url=”https://sysinfo.cc/ping.html”/>
<url_server url=”https://netprotections.cc/ping.html”/>
</urls_server>
<archiver url=”https://netprotections.cc/files/rar.exe”cmd=”a -r -dh -ep2 -v500k”/>
<url_update md5=”62b8e4b26b46eb58cb10a00b5ed390ea”url=”/files/010-update-2ds5b9dp3db5/15aug_xcv.exe”updating=”offline”/>
<vnc url dll=”/files/010-update-
2ds5b9dp3db5/vnc.dll”urldll_md5=”456a5739345754ad4af562a0c7d0ab0b”url=”https://80.86.88.87:8890”value=”off”/>
<httpinject value=”on”url=”/files/010-update-2ds5b9dp3db5/hidden7770777.jpg”md5=”5dc90a34b59ea12414bd2923dc72e77d”/>
<grabemails value=”off”/>
<plugins>
<plugin name=”archbot”url=”https://store-imgs.net/files/xmlz.gsm”value=”on”cmd=”https://store-imgs.net”/>
<plugin name=”BackSocks”url=”/files/010-update-2ds5b9dp3db5/Bot.dll”value=”load”cmd=”higuards.cc:18365”/>
<plugin name=”DiskSpread”url=”/files/010-update-2ds5b9dp3db5/dsp.psd”value=”on”cmd=”usa_xcv.exe”/>
<plugin name=”MessengerSpread”url=”/files/010-update-2ds5b9dp3db5/msg.gsm”value=”on”cmd=”astats.su|||15aug_xcv.exe”/>
</plugins>
</hijackcfg>

Listing 2: A sample configuration.

As you can see, the root level tag ‘hijackcfg’ suggests that this configuration is mainly for the hijacking process. With different install
modes, the bot parses different parts of the configuration.

Tag Inst = Master Inst = Slaver Inst = Pluginer

Botnet ✔ ✔ ✔

Timer_cfg ✔ ✔ ✔

Timer_log ✔ ✔ ✔

Timer_ping ✔ ✔ ✔

Url_server ✔ ✔ ✔

Archiver ✔

Url_update ✔

Vnc ✔ ✔

Httpinject ✔ ✔ ✔

Grabemails ✔

Plugin ✔

Table 3. Comparison of parsing tags in different modes.

The XML configuration is then parsed and saved into the named pipe. In this example, the ‘botnet’ tag shows the name of the botnet.
The ‘timer’ tags are the retry timeout settings. The ‘url_server’ tag stores the latest C&C server URLs. The ‘archiver’ tag contains a
download address of a legitimate packer tool named ‘RAR 3.00’, which is used to pack the botnet client into a size of around 500KB
with the command line options ‘a -r -dh -ep2 -v500k’. The ‘url_update’ tag contains the address of the update file of this bot. Therefore,
the bot has two ways of updating its C&C server list: one from the url_server tag, and one from the update of the bot’s binary. This
makes tracking solely the downloading of the cfg file meaningless, because someone could just recompile the bot with a new C&C
server list to get rid of the tracker.

Then there are the download modules. These modules can be either installed or uninstalled according to whether the ‘value’ is ‘on’ or
‘off’. The ‘vnc’ tag contains the download address of the vnc module. The ‘httpinject’ tag contains the download address of the script file
which is to be injected into the web pages. And the ‘grabemails’ tag may contain the download address of the module which can
harvest users’ email address books.

The MD5 is for pre-download comparison – if a module already exists in the system, it will not be downloaded again. The ‘plugin’ tags
contain the download addresses of the DLLs to be loaded into the injected process. To be distinct from the executable modules, the
DLLs are always loaded via the exported function in order, ‘Init’ then ‘Start’. And the ‘cmd’ values are fed as the command line options
of the DLL.

10/17

Notice that most of the ‘URLs’ in this configuration are missing domain names. The bot generates domains using the same algorithm as
described previously, appends ‘r=[random]’ to the end of the URL, and sends a Get message to try to download the file (e.g.
https://bzdfv2bjw791h.netprotections.cc/files/010-update-2ds5b9dp3db5/msg.gsm?r=1312723419). In the most recent version of the
malware (at the time of writing), the message is changed to POST with an empty z= value.

For keeping track of the updated C&C servers, the parsed url_server and the httpinject information is also saved into a local file in
%AppData% with a random name (e.g. 1937592302.dat) and encrypted using the RC4 algorithm with the id (as seen in Table 1). The
following is a sample content of the decrypted .dat file:

botnet=usa
injects=/files/010-update-9gdrdhb30/hidden7770777.jpg
server1=https://ehistats.su/ping.html
server2=https://sysinfo.cc/ping.html
server3=https://netprotections.cc/ping.html
server4=https://sysinfonet.cc/ping.html
server5=https://iestats.cc/ping.html
server6=https://ieguards.su/ping.html

Inline hooking and anti-hooking

The malware injects itself into other active processes. If it finds out that the host process is either iexplore.exe or firefox.exe, it will inline
hook the communication APIs used by the browser processes, then contact the C&C server with the ‘cmd’ value set to ‘cfg’ in order to
get the latest configuration. Otherwise, if the host process is not explorer.exe, userinit.exe or rundll32.exe, it will start to contact the C&C
server with the ‘cmd’ value set to ‘ping’ in the message.

The APIs it is targeting in iexplore.exe are the following:

ws2_32.dll:

send

wininet.dll:

HttpOpenRequestA

HttpOpenRequestW

HttpSendRequestA

HttpSendRequestW

HttpSendRequestExA

HttpSendRequestExW

InternetReadFile

InternetReadFileExA

InternetReadFileExW

InternetCloseHandle

InternetQueryDataAvailable

InternetSetStatusCallback

The screenshot in Figure 7 shows that the HttpSendRequestW API in iexplore.exe is inline-hooked.

Figure 7. The beginning of the HttpSendRequestW API is hooked.

The APIs it targets in firefox.exe are the following:

11/17

nspr4.dll:

PR_Read

PR_Write

PR_Close

nss3.dll:

CERT_VerifyCertName

CERT_VerifyCertNow

The functions hooking these APIs can disable security warnings and manipulate the sending and receiving of the web pages. This is the
core feature that enables Caphaw’s man-in-the-browser abilities. And because the bot uses some of these APIs for communication with
the C&C servers as well, it creates a backdoor table to store the first couple of instructions of the API call following a push-retn jump
back to the original routine. When contacting the C&C server, it calls these addresses directly to bypass the inline hooks, which were
made by itself.

Figure 8. Pre-defined location used to store dummy code, now stores the initial instructions (in red) and a jump to the API.

Modules and plug-ins

The following is a list of modules and plug-ins that have been downloaded by Caphaw over the years:

1. Browser cookie stealer (using archiver to archive and upload)

2. Flash cookies (SOLS) stealer

3. VNC server

4. Video capture and uploader (using archiver to archive and upload)

5. Message Spreader (via Skype)

6. Disk Spreader (worm)

7. Backsocks (modifies source code of 3proxy – a 3APA3A simplest proxy server, socks.c precisely).

The cookie stealer has the ability to steal or delete HTML and Flash cookies to facilitate the HTTP inject. The VNC server can enable
the attacker to gain remote access to the victim’s computer. The video capture and uploader can be used to monitor the victim’s
interaction with the computer, therefore drawing an even more complete picture of the target. The last three plug-ins are the recently
active ones. Message Spreader can send spam messages via Skype to spread itself or other malware. Disk Spreader can spread the

12/17

bot via removable drives. Backsocks can tunnel the attacker’s traffic through the victim’s machine into its internal networks, which
opens up a new area of resources for the attacker to gain access to – and because it uses the back SOCKS protocol, it can also work in
a NAT network.

All of these plug-ins can easily be installed/uninstalled. We believe the actual list of downloadable plug-ins will be larger than this. By
knowing the user’s information, the bot master can also tailor the list of plug-ins to be installed on the victim’s machine. BoB

Botnet operations

Caphaw is known for its ability to steal banking information and is most active in North America and western European countries. Figure
9 shows the distribution of active Caphaw C&C server locations during May 2014. In 31 days we discovered in total 28 active servers
which were mainly located in North America and western European countries. Note that North America has alone has 12 C&C servers
which are evenly distributed between the east and west coast.

Figure 9. Location of active Caphaw C&C servers in May 2014.

Conclusion

After two years of development, Caphaw has become a dangerous piece of malware. Unlike other botnets, Caphaw is meticulous about
its targets and extremely cautious in not launching any malicious activities if the environment is not deemed ‘safe’. In addition to
generating profit through man-in-the-browser attacks and occasional bitcoin mining, Caphaw has also shown great interest in infiltrating
internal networks with its arsenal of tools (Backsocks, Disk Spreader, video capturing and VNC server), which seems far beyond the
requirements of simply making money quickly.

Having two ways of updating its C&C server list and utilizing advanced code obfuscation techniques have benefited Caphaw in its ability
to remain undiscovered in a host for a long time. All of these signs indicate that Caphaw is a competent APT candidate which is capable
of hosting a reliable botnet. However, taking the time to reverse engineer Caphaw has proven fruitful as we have uncovered its core
module’s code structure, anti-analysis tricks and communication protocol. This gives us great leverage in terms of tracking and fighting
this threat.

Appendix 1: Detected anti-virus vendors and targeted process

Anti-malware value Process name

Agava firewall Fwservice.exe

AtGuard firewall iamapp.exe

Authentium vseamps.exe

Authentium vsedsps.exe

Avast ashServ.exe

Avast AvastSvc.exe

13/17

Anti-malware value Process name

Avast aswUpdSv.exe

Avast ashDisp.exe

Avira avgnt.exe

Avira avguard.exe

Avira sched.exe

AVG avgwdsvc.exe

AVG avgfws.exe

AVG avgemcx.exe

AVG avgrsx.exe

AVG avgchsvx.exe

AVG avgcc.exe

AVG avgemc.exe

AVG avgupsvc.exe

AVG avgw.exe

AVG guard.exe

AVG avgamsvr.exe

BitDefender vsserv.exe

Anti-malware value Process name

BullGuard BullGuard.exe

BullGuard BullGuardBhvScanner.exe

CA caamsvc.exe

CA isafe.exe

CA casc.exe

CA ccEvtMgr.exe

CA ccprovsp.exe

CA ccschedulersvc.exe

Comodo firewall cfp.exe

Comodo firewall cssurf.exe

Comodo firewall cmdagent.exe

Comcast Spyware Scan ComcastAntiSpyService.exe

Comcast Spyware Scan ComcastAntispy.exe

DeepFreeze deepfreeze.exe

Doctor Web dwengine.exe

Doctor Web drweb32w.exe

Doctor Web frwl_svc.exe

Emsisoft a2service.exe

iS3 SZServer.exe

14/17

Anti-malware value Process name

Kaspersky avp.exe

KERIO winroute.exe

Malwarebytes mbamservice.exe

Malwarebytes mbam.exe

MSEssentials msseces.exe

Nod32 egui.exe

Nod32 ekrn.exe

Nod32 nod32krn.exe

Nod32 nod32kui.exe

NeT firewall Firewall.msc

Norton360 ccSvcHst.exe

Norton navapw32.exe

Norton navapsvc.exe

McAfee SSScheduler.exe

McAfee EngineServer.exe

McAfee Mcshield.exe

McAfee mfeann.exe

McAfee mcagent.exe

McAfee VsTskMgr.exe

McAfee myAgtSvc.exe

McAfee McSACore.exe

MS Firewall Client FwcAgent.exe

MS Firewall Client FwcMgmt.exe

Lavasoft Ad-Aware AAWService.exe

Lavasoft Ad-Aware AAWWSC.exe

Lavasoft Ad-Aware AAWTray.exe

OnlineArmor firewall oasrv.exe

Outpost firewall op_mon.exe

Panda avengine.exe

Panda PavFnSvr.exe

Panda PavPrSvr.exe

Panda psksvc.exe

Panda firewall pshost.exe

Panda firewall ppfw.exe

Rapport rapportservice.exe

Rapport rapportmgmtservice.exe

PC Cleaner PCCleaners.exe

15/17

Anti-malware value Process name

Prevx prevx.exe

PC Tools SSDMonitor.exe

Sophos ALsvc.exe

Sophos almon.exe

Sophos ManagementAgentNT.exe

Sophos RouterNT.exe

Sophos SAVAdminService.exe

Sophos SavService.exe

Sophos swi_service.exe

SoftPerfect Personal Firewall fw.exe

Spyware Doctor FGuard.exe

Spyware Doctor pctsGui.exe

SpybotSD TeaTimer.exe

SUPERAntiSpyware SUPERAntiSpyware.exe

Symantec ccApp.exe

Symantec ccSvcHst.exe

Symantec Rtvscan.exe

Symantec DefWatch.exe

Symantec ccEvtMgr.exe

Symantec ccSetMgr.exe

Symantec ccSvcHst.exe

Symantec DoScan.exe

Symantec SPBBCSvc.exe

Symantec SmcGui.exe

Trend Micro coreFrameworkHost.exe

Trend Micro PccNTMon.exe

QuickHeal onlinent.exe

QuickHeal SCANMSG.exe

Webroot WRConsumerService.exe

Windows Defender MSASCui.exe

Windows Defender MsMpEng.exe

Virgin Media Fws.exe

Virgin Media RpsSecurityAwareR.exe

Virgin Media ServicepointService.exe

Virgin Media ServiceManager.exe

Virgin Media AVGIDSAgent.exe

ZoneAlarm vsmon.exe

16/17

Anti-malware value Process name

ZoneAlarm IswSvc.exe

Appendix 2: Recognized XML tag for configuration file

 1.2 1.4 1.6 1.9

/hijackcfg/vnc ✔ ✔ ✔

/hijackcfg/urls_server/url_server ✔ ✔ ✔ ✔

/hijackcfg/url_update ✔ ✔ ✔ ✔

/hijackcfg/upload_file ✔ ✔ ✔

/hijackcfg/uninstall ✔ ✔ ✔ ✔

/hijackcfg/timer_ping ✔ ✔ ✔ ✔

/hijackcfg/timer_inj_log ✔

/hijackcfg/timer_err_log ✔

/hijackcfg/timer_log ✔ ✔ ✔

/hijackcfg/timer_dll_cfg ✔

/hijackcfg/timer_cfg ✔ ✔ ✔

/hijackcfg/solfiles value=%s ✔ ✔

/hijackcfg/solfiles ✔ ✔ ✔ ✔

/hijackcfg/oskill ✔

/hijackcfg/plugins/plugin ✔ ✔ ✔

/hijackcfg/modules ✔ ✔ ✔

/hijackcfg/httpinject ✔ ✔ ✔ ✔

/hijackcfg/grabemails ✔

/hijackcfg/execute ✔ ✔ ✔ ✔

/hijackcfg/dll_load/dll ✔ ✔ ✔ ✔

/hijackcfg/cookies value=%s ✔ ✔

/hijackcfg/cookies ✔ ✔ ✔ ✔

/hijackcfg/certfiles ✔ ✔ ✔

/hijackcfg/botnet ✔ ✔ ✔ ✔

/hijackcfg/backconnect ✔ ✔

/hijackcfg/archiver ✔ ✔ ✔ ✔

/unit ✔ ✔ ✔ ✔

/inject ✔ ✔ ✔ ✔

/end ✔ ✔ ✔ ✔

/data ✔ ✔ ✔ ✔

/begin ✔ ✔ ✔ ✔

https://www.virusbulletin.com/uploads/pdf/conference/vb2014/VB2014-PunTan.pdf

17/17

Latest articles:

Cryptojacking on the fly: TeamTNT using NVIDIA drivers to mine cryptocurrency

TeamTNT is known for attacking insecure and vulnerable Kubernetes deployments in order to infiltrate organizations’ dedicated
environments and transform them into attack launchpads. In this article Aditya Sood presents a new module introduced by…

Collector-stealer: a Russian origin credential and information extractor

Collector-stealer, a piece of malware of Russian origin, is heavily used on the Internet to exfiltrate sensitive data from end-user systems
and store it in its C&C panels. In this article, researchers Aditya K Sood and Rohit Chaturvedi present a 360…

Fighting Fire with Fire

In 1989, Joe Wells encountered his first virus: Jerusalem. He disassembled the virus, and from that moment onward, was intrigued by
the properties of these small pieces of self-replicating code. Joe Wells was an expert on computer viruses, was partly…

Run your malicious VBA macros anywhere!

Kurt Natvig wanted to understand whether it’s possible to recompile VBA macros to another language, which could then easily be ‘run’
on any gateway, thus revealing a sample’s true nature in a safe manner. In this article he explains how he recompiled…

Dissecting the design and vulnerabilities in AZORult C&C panels

Aditya K Sood looks at the command-and-control (C&C) design of the AZORult malware, discussing his team's findings related to the
C&C design and some security issues they identified during the research.

Bulletin Archive

Copyright © 2015 Virus Bulletin

https://www.virusbulletin.com/virusbulletin/2022/04/cryptojacking-fly-teamtnt-using-nvidia-drivers-mine-cryptocurrency/
https://www.virusbulletin.com/virusbulletin/2021/12/collector-stealer-russian-origin-credential-and-information-extractor/
https://www.virusbulletin.com/virusbulletin/2021/06/fighting-fire-fire/
https://www.virusbulletin.com/virusbulletin/2021/04/run-your-malicious-vba-macros-anywhere/
https://www.virusbulletin.com/virusbulletin/2021/04/dissecting-design-and-vulnerabilities-azorultccpanels/
https://www.virusbulletin.com/virusbulletin/archive

