
1/13

March 5, 2015

Casper Malware: After Babar and Bunny, Another
Espionage Cartoon

welivesecurity.com/2015/03/05/casper-malware-babar-bunny-another-espionage-cartoon/

In this post, we lift the veil on Casper - another piece of software that we believe to have
been created by the same organization that is behind Babar and Bunny.

5 Mar 2015 - 01:55PM

In this post, we lift the veil on Casper – another piece of software that we believe to have
been created by the same organization that is behind Babar and Bunny.

In March 2014, French newspaper Le Monde revealed that France is suspected by the
Communications Security Establishment Canada (CSEC) of having developed and
deployed malicious software for espionage purposes. This story was based on presentation
slides leaked by Edward Snowden, which were then published by Germany’s Der Spiegel in
January 2015.

https://www.welivesecurity.com/2015/03/05/casper-malware-babar-bunny-another-espionage-cartoon/
http://www.lemonde.fr/international/article/2014/03/21/quand-les-canadiens-partent-en-chasse-de-babar_4387233_3210.html
http://www.spiegel.de/media/media-35683.pdf


2/13

According to the CSEC presentation, the malicious software in question is called “Babar” by
its creators, likely after the famous French cartoon character “Babar The Elephant”. Since
then, several malware researchers have begun to work on the enigma that is Babar. Marion
Marschalek (Cyphort) struck first, with her report on the “Bunny” malware. Bunny shares
some characteristics with the Babar malware described by CSEC. In mid-February, Marion
published another report, this time on the actual Babar case, explaining in great detail its
spying features. At the same time, Paul Rascagnères (G Data) published a blog post on the
similarities between Babar and Bunny, and showed that they were very probably related to
the malware described in the CSEC’s slides.

In this blog post, we lift the veil on another piece of software that we believe to have been
created by the same organization that is behind Babar and Bunny. This component is called
“Casper” by its authors – presumably named after yet another famous cartoon character.

Casper was used against Syrian targets in April 2014, which makes it the most recent
malware from this group publicly known at this time. To attack their targets, Casper’s
operators used zero-day exploits in Adobe Flash, and these exploits were – surprisingly –
hosted on a Syrian governmental website. Casper is a well-developed reconnaissance tool,
making extensive efforts to remain unseen on targeted machines. Of particular note are the
specific strategies adopted against antimalware software.

Context

In mid-April 2014, Vyacheslav Zakorzhevsky (Kaspersky) observed that the website
“jpic.gov.sy” was hosting two Flash zero-day exploits, targeting the vulnerability later labeled
CVE-2014-0515. This website was set up in 2011 by the Syrian Justice Ministry apparently
to allow Syrian people to ask for reparation for the damage of the civil war. The website is
still online and apparently currently clean, although it was defaced in September 2014 by
some “hacktivist”.

At the time of the events, Zakorzhevsky could not retrieve the payloads distributed by these
Flash zero-days exploits. ESET researchers were able to find two of these payloads, thanks
to ESET LiveGrid® threat telemetry systems. The URLs of these payloads and the dates
when they were seen correspond to Zakorzhevsky’s description.

In a joint effort with Marion Marschalek, Paul Rascagnères, and researchers from the
Computer Incident Response Center Luxemboug (CIRCL), we were recently able to
determine that the payloads distributed were very likely developed by the same actors who
developed the Babar and Bunny software.

Casper Binary Analysis

http://en.wikipedia.org/wiki/Babar_the_Elephant
http://www.cyphort.com/evilbunny-malware-instrumented-lua/
http://www.cyphort.com/babar-suspected-nation-state-spyware-spotlight/
https://blog.gdatasoftware.com/blog/article/babar-espionage-software-finally-found-and-put-under-the-microscope.html
http://virusradar.com/glossary/zero-day
https://www.welivesecurity.com/search/?s=Flash&x=0&y=0
http://securelist.com/blog/incidents/59399/new-flash-player-0-day-cve-2014-0515-used-in-watering-hole-attacks/
http://www.zone-h.org/mirror/id/22851174?zh=2
http://www.eset.com/int/about/technology/#livegrid
http://www.circl.lu/


3/13

The two samples we found are the same core program but differently packaged. The first
sample is an executable dropping the core program and making it persistent on the
machine. The second is a Windows library that deploys the core program directly into
memory, also in the form of a library. In this latter case, the name of the core program library
was left visible by its creators: “Casper_DLL.dll”.

Throughout this blog, we will focus on the first of these two payloads, the second one being
similar in terms of behavior.

Dropper

The dropper is named “domcommon.exe” and its compilation date is set to the June 18 ,
2010. This is very likely a forged date, as we will explain later.

Its execution is based on an XML configuration file decrypted at runtime with the RC4
algorithm and a hardcoded 16-byte key. Before the decryption, the program uses a
checksum computation to make sure the memory area containing the decryption key has
not been modified. Figure 1 shows the dropper’s decrypted configuration file.

Figure 1 – Casper Dropper Configuration File

Casper Playing Chess against Antivirus

Firstly, the dropper extracts the <STRATEGY> tag from its configuration file. This tag
defines precisely how the malware should behave, depending on which antivirus is present
on the machine.

Choosing the appropriate strategy

First, the dropper retrieves the name of any antivirus that may be running on the machine
by executing the Windows Management Instrumentation (WMI) request “SELECT * FROM
AntiVirusProduct” and fetching the “displayName” field from the result. If an <AV> tag exists
in the configuration file with a “NAME” attribute matching the name of an installed antivirus
product, it will be set as the execution strategy. In this case, four antivirus products have a
defined strategy.

th

https://www.welivesecurity.com/wp-content/uploads/2015/03/Figure-1.png
https://msdn.microsoft.com/en-us/library/aa394582%28v=vs.85%29.aspx


4/13

If no strategy is found for the running antivirus, or if no antivirus is protecting the computer,
the default strategy described in the <STRATEGY> tag’s attributes will be applied.
Alternatively, if a file named “strategy.xml” is present in the dropper’s folder, it will override
the strategy from the configuration file.

Possible Moves

A strategy is a set of attributes that influences both the dropper and the payload execution.
Some of these attributes define how to realize certain actions, whereas the others define
whether to perform certain actions. The following array describes the various “moves”
offered by these attributes.

Attribute Attribute Purpose
Possible
Value Value Meaning

RUNKEY Defines how the dropper will interact
with the Windows registry in order to
be persistent on the machine

API Calls to Windows API
functions

 (RegOpenKeyEx,
RegQueryValueEx…)

BAT Execution of a batch file containing
“reg” commands

REG Execution of “reg” commands in a
command prompt process

WMI Calls to methods of the StdRegProv
WMI class

AUTODEL Defines how the dropper will remove
itself from the machine after its
execution

DEL Execution of a
command line in a
command prompt
process

API Call to MoveFileEx API function to
delete the dropper during the next
restart of the system

WMI Execution of a command line in a
command prompt process created
through the Create method of the
Win32_Process WMI class

INJECTION Defines whether the dropper and the
payload will inject their code into a
new process, or execute it in the
initial process

YES/NO N/A

SAFENOTIF Defines whether or not the payload
will contact the C&C server

YES/NO N/A

https://technet.microsoft.com/en-us/library/cc732643.aspx
https://msdn.microsoft.com/en-us/library/aa393664(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa365240%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/aa389388(v=vs.85).aspx


5/13

Attribute Attribute Purpose
Possible
Value Value Meaning

SERVICE Likely defines how to interact with
Windows services, but the code
managing this attribute is missing in
these Casper samples

API N/A

SC N/A

ESCAPE Defines whether the dropper will
execute normally, or simply exit

YES/NO N/A

SCHEDULER Unknown. The code managing this
attribute is missing in these Casper
samples

CMD N/A

The possibilities offered by this <STRATEGY> tag show that Casper’s authors have
acquired an in-depth knowledge of behavioral detections in certain antivirus products.

For example, process injection will only happen on machines with none of the four defined
antiviruses running, since in such a case the “INJECTION” attribute will be set to “NO”.
Interestingly, three antiviruses have the “ESCAPE” attribute set to “YES”, which means the
dropper will simply uninstall itself in their presence without deploying Casper’s payload.

As the list of <AV> tags is pretty short, we can speculate that these are the antiviruses
Casper’s authors expect to find on their targets. For the record, the “VERSION” attribute
present in one <AV> tag is actually never used in the code, but it still indicates the intention
to distinguish different versions of the same antivirus product. We very rarely see this level
of precision employed in malware in order to bypass antivirus.

Time To Drop The Payload

In the event that the “ESCAPE” attribute is set to “NO” in the chosen strategy – as is the
case with the default strategy – the dropper will then execute the commands provided in the
form of XML tags in the configuration file, as shown in Figure 2.

Figure 2 – Casper Dropper’s Commands

Uninstalling previous versions

https://www.welivesecurity.com/wp-content/uploads/2015/03/Figure-2.png


6/13

The first command instructs the dropper to remove other Casper instances that could
possibly be running on the system. The corresponding <UNINSTALL> tag comes with a
“name” attribute, which will be prefixed with the BIOS constructor name retrieved from the
Windows registry (Intel, NEC…) before being used as an identifier. This prefixing is likely
meant to avoid drawing the user’s attention if he or she happened to notice the identifier.

The program is uninstalled in two steps, each step addressing different methods of
persistence employed by Casper:

If it exists, the scheduled task whose name matches the identifier is removed from the
system
If it exists, the application registered with the identifier in the Windows registry is
removed from the system

Payload installation

The payload installation is then directed by the <INSTALL> tag, which provides two
versions of the payload, one for 32-bit machines (<x86>) and another one for 64-bit
machines (<x64>).

The attributes of the <INSTALL> tag will then be used by one of the two installation
methods previously mentioned. If the operating system is Windows 7 or newer, persistence
will be set through a scheduled task; otherwise it will be set through the Windows registry
key

“HKLM\Software\Microsoft\Windows\CurrentVersion\Run”.

The <INSTALL> tag provides an argument to give to the payload. The exact value of the
argument is critical to the “correct” execution of the payload. The actual verification in the
payload is subtle: the argument is used in a custom algorithm to find library functions in
memory. Unless the value is correct, the addresses of these library functions will be wrong,
resulting in a random-looking crash of the payload.

Dropper cleans itself

Before terminating its execution, the dropper removes itself from the system, using the
method defined in the AUTODEL attribute. It should be noted that the payload is not
launched at this moment: it will be run only at the next startup thanks to the previous
persistence method.

Payload

Similarly to the dropper, Casper payload’s execution is based on an XML configuration file
decrypted at run-time, and shown in Figure 3.



7/13

Figure 3 – Casper’s Payload Configuration File

This configuration file starts with a timestamp, which corresponds to Monday, the 7th April
2014 at 21:27:05 GMT. Therefore, the compilation timestamps – set to 2010 – have very
likely been forged.

A series of <PARAM> tags will then control the payload’s behavior, as described in the
following array.

attribute Purpose

ID Unknown. It could be used to distinguish operations, as the value is the
same in the two payloads hosted on “jpic.gov.sy”.

REGKEY Path in the Windows registry that will be used as storage area

URL C&C server’s URL

KEY Cryptographic key for the communications with the C&C server

DELAYMIN 
 DELAYMAX
 DELAYRETRY

Timers to configure the frequency of the contacts with the C&C server

The payload then generates a unique identifier for the machine and inserts it at the end of
the configuration in a <UID> tag. Finally, the configuration is RC4-encrypted and stored in
the Windows registry.

The code handling the configuration shows certain capabilities not exploited in these
Casper samples, for example a TIMETOLIVE attribute to plan the termination of Casper
after a certain amount of time, or a DELAYED_START attribute to wait before interacting
with the system.

Finally, the payload’s configuration contains the exact same <STRATEGY> as the dropper.

Report to C&C

During its first execution, Casper’s payload executes the following XML file:

https://www.welivesecurity.com/wp-content/uploads/2015/03/Figure-3.png


8/13

<COMMAND name=’SYSINFO’/>

The handler of the “SYSINFO” command retrieves information about the system and builds
a report containing several sections, as shown in Figure 4.

Figure 4 – SYSINFO Command’s Result

The titles of the report sections are self-explanatory. Interestingly, the version of the
malware is clearly mentioned: 4.4.1. This report is then base64-encoded and sent to the
C&C server in the body of an HTTP POST request. It will also be written into a temporary
file named “perfaudio.dat”.

https://www.welivesecurity.com/wp-content/uploads/2015/03/figure-4.png
http://virusradar.com/en/glossary/command-and-control-server


9/13

The network request will also have a cookie named “PREF” filled with the concatenation of
the machine UID, the configuration ID, the version of Casper and the hardcoded character
“R”, all base64-encoded.

C&C’s possible answers

Due to the C&C being down at the time of the investigation we can only speculate on the
rest of the execution based on Casper’s known capabilities.

At this point, the binary regularly contacts the C&C server with a cookie similar to the one in
the SYSINFO request, but this time with “G” as the hardcoded character instead of “R”. Our
analysis of the binary reveals that the server can then send back a PNG image – with the
correct header and format for a PNG file — from which a XML command file will be
decrypted and executed.

In addition to the “SYSINFO” command, Casper can handle <COMMAND> tags with the
following values:

“EXEC” to execute a program on the machine from its local path
“SYSTEM” to execute commands in a Windows command prompt

Finally, Casper can also handle <PLUGIN> tags, whose content is a Windows executable to
deploy on the machine.

How Does Casper Relate to the Other Cartoons?

Our best chance of establishing that the same developers are behind Bunny, Babar and
Casper is to identify unusual code or algorithms shared between these various programs. In
our comparison we also take into account the so-called “NBOT” malware (also known as
the “TFC” malware), whose link with Babar and Bunny was established by Marion
Marschalek in her Babar report. Here is a non-exhaustive list of such shared features we
observed:

Casper hides its calls to API functions by using a hash calculated from the functions’
names, rather than the names themselves. The hashing algorithm is a combination of
rotate-left (ROL) of 7 bits and exclusive-or (XOR) operations. NBOT uses the exact
same algorithm for the same purpose, whereas Babar hides its API calls in a similar
manner but with a different algorithm.

Casper fetches information about the running antivirus in a way similar to Bunny,
Babar, and NBOT, namely through the same WMI request. Moreover, all these
malwares compute the SHA-256 hash of the first word of the antivirus name, although
in Casper it is actually never used.

http://www.cyphort.com/babar-suspected-nation-state-spyware-spotlight/


10/13

Casper generates delimiters for its HTTP requests by filling a specific format string
with the results of calls to the GetTickCount API function. The same code is present in
some NBOT samples, as shown in the following array.

Extract of Casper’s code

Extract of NBOT’s code

Casper removes its dropper by executing a Windows command created from the
following format string:

cmd.exe /C FOR /L %%i IN (1,1,%d) DO IF EXIST “%hs” (DEL “%hs” & SYSTEMINFO)
ELSE EXIT

In some NBOT samples we can find the following similar syntax:

https://www.welivesecurity.com/wp-content/uploads/2015/03/Casper-code.png
https://www.welivesecurity.com/wp-content/uploads/2015/03/NBot-code.png


11/13

cmd.exe /C FOR /L %%i IN (1,1,%d) DO IF EXIST “%s” (DEL “%s” & PING 127.0.0.1 -n
3) ELSE EXIT

Casper uses an “ID” value set to “13001”, whereas Babar samples contain an ID of
“12075-01”. Also, the malware discovered in 2009 by the CSEC possesses an ID of
“08184” (slide 8 of the CSEC slides). This similar format, and the increasing value in
decimal, could indicate a familial link.

None of these signs alone is enough to establish a strong link but all the shared features
together make us assess with high confidence that Bunny, Babar, NBOT and Casper
were all developed by the same organization.

Victimology

According to our telemetry data, all the people targeted during this operation were located
in Syria. These targets may have been the visitors of the “jpic.gov.sy” website — Syrian
citizens who want to file a complaint. In this case they could have been redirected to the
exploits from a legitimate page of this website.

But we were actually unable to determine if this were indeed the case. In other words, it is
just as likely that the targets have been redirected to the exploits from another location, for
example from a hacked legitimate website or from a link in an email. What is known for sure
is that the exploits, the Casper binaries and the C&C component were all hosted on this
website’s server.

This leads us to a second hypothesis: the “jpic.gov.sy” website could have been hacked to
serve as a storage area. This would have at least two advantages for the attackers: firstly,
hosting the files on a Syrian server can make them more easily accessible from Syria, a
country whose Internet connection to the outside world has been unstable since the
beginning of the civil war, as shown in Google Transparency Report. Secondly, it would
mislead attribution efforts by raising suspicion against the Syrian government.

Conclusion

As previously explained, we are confident that the same group developed Bunny, Babar
and Casper. The detailed analysis of Babar in the CSEC slides from 2009 indicates this
group is not a newcomer to the espionage business. The use of zero-day exploits is another
indication that Casper’s operators belong to a powerful organization. Finally, the narrow
targeting of people in Syria shows a likely interest in geopolitics.

Nevertheless, we did not find any evidence in Casper itself to point a finger at a specific
country. In particular, no signs of French origin, as suggested by CSEC for Babar, were
found in the binaries.

http://www.spiegel.de/media/media-35683.pdf
http://www.google.com/transparencyreport/traffic/explorer/?r=SY&l=EVERYTHING&csd=1301710971931&ced=1413615600000


12/13

Hashes

SHA1 Note
ESET Detection
Name

75BF51709B913FDB4086DF78D84C099418F0F449 DLL
Dropper

Win32/ProxyBot.B

7F266A5E959BEF9798A08E791E22DF4E1DEA9ED5 DLL
Dropper

Win32/ProxyBot.B

E4CC35792A48123E71A2C7B6AA904006343A157A Executable
Dropper

Win32/ProxyBot.B

F4C39EDDEF1C7D99283C7303C1835E99D8E498B0 X86
Executable
Payload

Win32/ProxyBot.B

C2CE95256206E0EBC98E237FB73B68AC69843DD5 X64
Executable
Payload

Win32/ProxyBot.A

Indicators of Compromise

Indicator Value

Dropper’s file name domcommon.exe

Payload’s file name aiomgr.exe

C&C URLs hXXp://jpic.gov.sy/css/images/_cgi/index.php

Mutex name {4216567A-4512-9825-7745F856}

Key for configuration decryption 7B 4B 59 DE 37 4A 42 26 59 98 63 C6 2D 0F 57 40

Temporary file name perfaudio.dat

Image: PAISAN HOMHUAN / Shutterstock.com

5 Mar 2015 - 01:55PM

Sign up to receive an email update whenever a new article is published in
our Ukraine Crisis – Digital Security Resource Center

https://www.welivesecurity.com/category/ukraine-crisis-digital-security-resource-center/


13/13

Newsletter

Discussion


