
1/11

Talos Group May 4, 2015

Threat Spotlight: Rombertik – Gazing Past the Smoke,
Mirrors, and Trapdoors

blogs.cisco.com/security/talos/rombertik

This post was authored by Ben Baker and Alex Chiu.

Executive Summary

Threat actors and security researchers are constantly looking for ways to better detect and
evade each other. As researchers have become more adept and efficient at malware
analysis, malware authors have made an effort to build more evasive samples. Better static,
dynamic, and automated analysis tools have made it more difficult for attackers to remain
undetected. As a result, attackers have been forced to find methods to evade these tools and
complicate both static and dynamic analysis.

It becomes critical for researchers to reverse engineer evasive samples to find out how
attackers are attempting to evade analysis tools. It is also important for researchers to
communicate how the threat landscape is evolving to ensure that these same tools remain
effective. A recent example of these behaviors is a malware sample Talos has identified as

http://blogs.cisco.com/security/talos/rombertik
http://blogs.cisco.com/author/benbaker
http://blogs.cisco.com/author/alexanderchiu

2/11

Table of Contents
Executive Summary
The 10,000 Foot View at Rombertik
Analysis
A Nasty Trap Door
The Actual Malware
Coverage and Indicators of Compromise
Conclusion

Rombertik. In the process of reverse
engineering Rombertik, Talos discovered
multiple layers of obfuscation and anti-
analysis functionality. This functionality was
designed to evade both static and dynamic
analysis tools, make debugging difficult. If the
sample detected it was being analyzed or
debugged it would ultimately destroy the
master boot record (MBR).

Talos’ goal is to protect our customer’s
networks. Reverse engineering Romberik helps Talos achieve that goal by better
understanding how attackers are evolving to evade detection and make analysis difficult.
 Identifying these techniques gives Talos new insight and knowledge that can be
communicated to Cisco’s product teams. This knowledge can then be used to harden our
security products to ensure these anti-analysis techniques are ineffective and allow detection
technologies to accurately identify malware to protect customers.

The 10,000 Foot View at Rombertik

At a high level, Romberik is a complex piece of malware that is designed to hook into the
user’s browser to read credentials and other sensitive information for exfiltration to an
attacker controlled server, similar to Dyre. However, unlike Dyre which was designed to
target banking information, Rombertik collects information from all websites in an
indiscriminate manner.

Rombertik has been identified to propagate via spam and phishing messages sent to would-
be victims. Like previous spam and phishing campaigns Talos has discussed, attackers use
social engineering tactics to entice users to download, unzip, and open the attachments that
ultimately result in the user’s compromise.

http://blogs.cisco.com/security/talos/rombertik#summary
http://blogs.cisco.com/security/talos/rombertik#high-level
http://blogs.cisco.com/security/talos/rombertik#analysis
http://blogs.cisco.com/security/talos/rombertik#trap-door
http://blogs.cisco.com/security/talos/rombertik#malware
http://blogs.cisco.com/security/talos/rombertik#ioc
http://blogs.cisco.com/security/talos/rombertik#conclusion
http://blogs.cisco.com/talos/threat-spotlight-dyre

3/11

Figure 1: Email

messages such as the one seen here are spammed out in the hopes that users will open
them and open the attachments. This is one sample that was used to propagate Rombertik.
In this sample, the message observed in Rombertik’s distribution appears to come from the
“Windows Corporation,” an organization that possesses “state-of-the-art manufacturing
quality processes.” The attackers attempt to convince the user to check the attached
documents to see if their business aligns with the target user’s organization. If the user
downloads and unzips the file, the user then sees a file that looks like a document thumbnail.

While this file may appears to be some sort of PDF from the
icon or thumbnail, the file actually is a .SCR screensaver
executable file that contains Rombertik. Once the user double
clicks to open the file, Rombertik will begin the process of
compromising the system.

The process by which Rombertik compromises the target
system is a fairly complex with anti-analysis checks in place to
prevent static and dynamic analysis. Upon execution,
Rombertik will stall and then run through a first set of anti-
analysis checks to see if it is running within a sandbox. Once
these checks are complete, Rombertik will proceed to decrypt and install itself on the victims
computer to maintain persistence. After installation, it will then launch a second copy of itself
and overwrite the second copy with the malware’s core functionality. Before Rombertik
begins the process of spying on users, Rombertik will perform once last check to ensure it is
not being analyzed in memory. If this check fails, Rombertik will attempt to destroy the
Master Boot Record and restart the computer to render it unusable. The graphic below
illustrates the process.

4/11

Figure 2: An

illustration of the step-by-step process Rombertik follows to compromise the target system.

Analysis

From the beginning, Rombertik incorporates several layers of obfuscation along with anti-
analysis functionality. Obfuscating the functionality of a malware sample can be
accomplished in many different ways. A common method is to include garbage code to
inflate the volume of code an analyst might have to review and analyze. In this case, the
unpacked Rombertik sample is 28KB while the packed version is 1264KB. Over 97% of the
packed file is dedicated to making the file look legitimate by including 75 images and over
8000 functions that are never used. This packer attempts to overwhelm analysts by making it
impossible to look at every function.

5/11

Figure 3:

This chart shows the breakdown of the Rombertik executable and how it contains a large
amount of unnecessary code and data.
As we started to slowly peel back the layers and focus on the subset of functions that are
actually used, we observed an interesting sandbox evasion technique. A common technique
to evade sandboxes is to sleep for extended lengths of time with the intention of forcing the
sandbox to time out before the malware “wakes up” and begins executing. In response,
sandboxes got better at detecting and responding when malware slept for extended periods
of time. Rombertik employs a similar approach to delay execution, but does so without
sleeping. Rombertik instead writes a byte of random data to memory 960 Million times. This
is designed to consume time, like sleeping, but presents a couple disadvantages for
sandboxes and application tracing tools. Sandboxes may not be able to immediately
determine that the application is intentionally stalling since it’s not sleeping. The other
disadvantage is that the repetitive writing would flood application tracing tools. If an analysis
tool attempted to log all of the 960 Million write instructions, the log would grow to over 100
gigabytes. Even if the analysis environment was capable of handling a log that large, it would
take over 25 minutes just to write that much data to a typical hard drive. This complicates
analysis.

https://blogs.cisco.com/wp-content/uploads/rombertik-piechart-watermark.png

6/11

After intentionally stalling by writing to memory repeatedly, Rombertik checks to see if
analysis tools have modified code in the Windows API ZwGetWriteWatch routine. It does
this by calling ZwGetWriteWatch with invalid arguments. If the routine does not return with a
specific error, Rombertik terminates. The assumption behind checking for a specific error
versus a generic error is to check for sandboxes that suppress errors returned from API
routine calls. Once the sandbox check is complete, Rombertik calls the Windows API
OutputDebugString function 335,000 times as an anti-debugging mechanism. Finally, an
anti-analysis function within the packer is called to check the username and filename of the
executing process for strings like “malwar”, “sampl”, “viru”, and “sandb”. If the packer detects
any of these substrings, it will stop unpacking and terminate. At this point, the initial anti-
analysis checks are complete.

Once the packer has run through initial anti-analysis checks, it will check to see if it is
executing from %AppData%\rsr\yfoye.exe. If the packer is not executing from there, it will
proceed to install itself in order to ensure persistence across system reboots before
continuing on to execute the payload. To install itself, Rombertik first creates a VBS script
named “fgf.vbs”, which is used to kick off Rombertik every time the user logs in, and places
the script into the user’s Startup folder. Rombertik then creates %AppData%\rsr\yfoye.bat
and moves the packed version of itself into %AppData%\rsr\yfoye.exe.

If Rombertik detects it is already executing from %AppData%\rsr\yfoye.exe, the malware will
then begin decrypting and executing the main unpacking code in memory. Rombertik will
then proceed to execute yfoye.exe a second time to create a new instance of the process.
 Once the unpacking is complete, Rombertik will overwrite the memory of the new process
with the unpacked executable code. The unpacking code is monstrous and has many times
the complexity of the anti-analysis code. The code contains dozens of functions overlapping
with each other and unnecessary jumps added to increase complexity. The result is a
nightmare of a control flow graph with hundreds of nodes. Figure 4 helps illustrate how
complex the unpacking code is in comparison to the all the code that performs anti-analysis
checks.

7/11

Figure 4: The

control flow graph on the left represents the interwoven functions within the unpacking code
that’s decrypted to memory. The control flow graph on the right represents the previously
mentioned anti-analysis checks. These 23 basic blocks represent the 930 million writes, 335
thousand API calls, checking ZwGetWriteWatch, and checking file and usernames. All of this
functionality fits in this rather simple graph, where the red block is only executed if all of the
checks were satisfied. A typical function has less than 20 nodes (basic blocks) and would
normally be easy to see how all basic blocks relate to each other.

A Nasty Trap Door

Once the unpacked version of Rombertik within the second copy of yfoye.exe begins
executing, one last anti-analysis function is run — which turns out to be particularly nasty if
the check fails. The function computes a 32-bit hash of a resource in memory, and
compares it to the PE Compile Timestamp of the unpacked sample. If the resource or
compile time has been altered, the malware acts destructively. It first attempts to overwrite
the Master Boot Record (MBR) of PhysicalDisk0, which renders the computer inoperable. If
the malware does not have permissions to overwrite the MBR, it will instead destroy all files
in the user’s home folder (e.g. C:\Documents and Settings\Administrator\) by encrypting each
file with a randomly generated RC4 key. After the MBR is overwritten, or the home folder
has been encrypted, the computer is restarted.

https://alln-extcloud-storage.cisco.com/Cisco_Blogs:ciscoblogs/control-flows-wm.png

8/11

The Master Boot Record starts with code that is executed before the Operating System. The
overwritten MBR contains code to print out “Carbon crack attempt, failed”, then enters an
infinite loop preventing the system from continuing to boot.

The MBR also contains information about the disk partitions. The altered MBR overwrites the
bytes for these partitions with Null bytes, making it even more difficult to recover data from
the sabotaged hard drive.

Once the computer is restarted, the victim’s computer will be stuck at this screen until the
Operating System is reinstalled:

9/11

Effectively, Rombertik begins to behave like a wiper malware sample, trashing the user’s
computer if it detects it’s being analyzed. While Talos has observed anti-analysis and anti-
debugging techniques in malware samples in the past, Rombertik is unique in that it actively
attempts to destroy the computer’s data if it detects certain attributes associated with
malware analysis.

The Actual Malware

At this point, Rombertik will assume that all anti-analysis checks have passed and will
actually begin doing what was originally intended — stealing user data. Rombertik will scan
the user’s currently running process to determine if a web browser is currently running. If
Rombertik detects an instance of Firefox, Chrome, or Internet Explorer, it will inject itself into
the process and hook API functions that handle plain text data. Once accomplished,
Rombertik is then able to read any plain-text data the user might type into their browser and
capture this input before it gets encrypted if the input is to be sent over HTTPS. This enables
the malware to collect data such as usernames and passwords from almost any website.
 Rombertik does not target any site in particular, such as banking sites, but instead, attempts
to steal sensitive information from as many websites as possible. The collected data is then
Base64 encoded and forwarded to www.centozos.org.in/don1/gate.php (in this example)
over HTTP with no encryption.

http://blogs.cisco.com/talos/wiper-malware

10/11

Coverage and Indicators of Compromise

Sample Analysed (SHA256)

0d11a13f54d6003a51b77df355c6aa9b1d9867a5af7661745882b61d9b75bccf

Command-and-Control Servers

www.centozos[.]org[.]in

Conclusion

Rombertik is a complex piece of malware with several layers of obfuscation and anti-analysis
functionality that is ultimately designed to steal user data. Good security practices, such as
making sure anti-virus software is installed and kept up-to-date, not clicking on attachments
from unknown senders, and ensuring robust security policies are in place for email (such as
blocking certain attachment types) can go a long way when it comes to protecting users.
 However, a defense in depth approach that covers the entire attack continuum can help
identify malware and assist in remediation in the event that an attacker finds a way to evade
detection initially.

For Talos, understanding how malware changes and evolves is essential to developing
detection content and ensuring that static, dynamic, and automated analysis tools remain
effective. We must adapt, change, and respond accordingly to address the evolving threat
landscape. Looking forward, Talos expects these methods and behaviors to be adopted by
other threat actors in the future.

Protecting Users From These Threat

We encourage organizations to consider security best practices, starting with a threat-centric
approach that implements protections across the extended network and across the full attack
continuum.

11/11

ESA can block malicious emails, including phishing
and malicious attachments sent by threat actors.

CWS/WSA web scanning prevents access to
websites hosting malicious content.

Advanced Malware Protection (AMP) is designed to
prevent the execution of the malware used by these
threat actors.

Network Security appliances, such as NGIPS and
NGFW, have signatures to detect and block malicious
network activity by threat actors.

Share:

http://www.cisco.com/c/en/us/products/security/email-security-appliance/index.html
http://www.cisco.com/c/en/us/products/security/cloud-web-security/index.html
http://www.cisco.com/c/en/us/products/security/web-security-appliance/index.html
http://www.cisco.com/c/en/us/support/security/amp-firepower-software-license/tsd-products-support-series-home.html
http://www.cisco.com/c/en/us/products/security/intrusion-prevention-system-ips/index.html
http://www.cisco.com/c/en/us/products/security/asa-next-generation-firewall-services/index.html

