
1/13

hasherezade July 13, 2015

Revisiting The Bunitu Trojan
blog.malwarebytes.com/threat-analysis/2015/07/revisiting-the-bunitu-trojan/

This post describes the infection process of the latest version of the Bunitu Proxy Trojan as
seen delivered by the Neutrino Exploit Kit via a malvertising campaign.

We will start from a high-level overview of the issue and used elements. Then, we will dive
deeper in the used techniques of hiding and obfuscating the modules.

What is Bunitu Proxy and why is it dangerous?

As its name suggests, Bunitu Proxy is a Trojan that exposes the infected computer to be
used as a proxy for remote clients. It is done in a few steps:

1. Installs itself on the machine
2. Opens ports for the remote connections
3. Registers itself in the remote server (clients database) informing about its address and

open ports
4. Accepts connections coming on the exposed ports and bypasses the traffic

It may have various consequences for the infected user. Basically, it uses his/her resources
and slows down the network traffic. But it may also frame him/her in some illegal activities
carried by the attackers due to the fact that the infected client’s IP is the one visible from the

https://blog.malwarebytes.com/threat-analysis/2015/07/revisiting-the-bunitu-trojan/

2/13

outside.

Read more: Who’s Behind Your Proxy? Uncovering Bunitu’s Secrets

How is the infection carried?

Bunitu has been dropped from various exploit kits. On June 10th 2015, as Websense
Security Labs described in their post, it was dropped by the Angler Exploit Kit. This time, a
similar payload is distributed by Neutrino EK.

Role of Neutrino EK

A malvertising from Adcash (they have been notified and the problem is already fixed)
redirected users to the Neutrino EK via a compromised site and rotator.

The below screenshot from Fiddler Web Debugger, shows the chain of URLs on the way of
dropping the malicious payload:

The rotator (.eu domain) does its job of switching to a new sub-domain every few minutes.
This technique is often used to bypass blacklists because the malicious URLs are ‘moving
targets’:

https://blog.malwarebytes.org/botnets/2015/08/whos-behind-your-proxy-uncovering-bunitus-secrets/
http://community.websense.com/blogs/securitylabs/archive/2015/06/10/large-malvertizing-campaign-leads-to-angler-ek-amp-bunitu-malware.aspx
https://blog.malwarebytes.org/wp-content/uploads/2015/07/Fiddler2_cap1.png
https://blog.malwarebytes.org/wp-content/uploads/2015/07/rotator1.png

3/13

And the landing page carried the exploit:

At this stage, users of Malwarebytes Anti-Exploit were protected – the product detected and
stopped the malicious activity.

https://blog.malwarebytes.org/wp-content/uploads/2015/07/landing1.png
https://www.malwarebytes.org/antiexploit/?utm_source=blog&utm_medium=social
https://blog.malwarebytes.org/wp-content/uploads/2015/07/MBAE_.png

4/13

But if deployed on a vulnerable, unprotected machine, infection followed further – the
payload was dropped and deployed.

Payload: Bunitu Proxy

Infection symptoms

Looking at the payload from outside, we will see just a typical installer (with an NSIS installer
icon).

It pretends to be a legitimate piece of software – scamming an existing product: ManyCam
by Visicom Media.

After dropping the malicious DLL (described in details further), the installer tries to run it.
Then we witness the attempt of opening the ports for incoming connections.

Windows Firewall alerts about this attempt (it seems that at this level it relies on social
engineering – only under Windows XP it managed to suppress these messages to maintain
stealth).

Also, after the successful setup, when the computer is restarted, the persistent module runs
again – triggering a similar alert:

https://download.manycam.com/
http://www.vmn.net/
https://blog.malwarebytes.org/wp-content/uploads/2015/07/alert1.png

5/13

If we see the details of the running process (rundll32) i.e. in Process Explorer, it will reveal
the module that has been loaded:

https://blog.malwarebytes.org/wp-content/uploads/2015/07/rundll.png
https://blog.malwarebytes.org/wp-content/uploads/2015/07/running.png

6/13

and the open ports (chosen randomly at the time of installation):

If we keep it running for some time, we may even see the clients, that connected via our
unwanted proxy (in the below case, july1.exe was used as the name of the installer)

Technical details

To hide its real intentions, the installer uses several layers of protection. It takes several
modules to run before the malicious DLL (serving as proxy) is revealed. Let’s go deeper!

Flow:

installer.exe-> unpacks and loads:
 lithiasis.dll, function: Avidness -> decrypts and runs using RunPE technique:
 stub_unpacked.exe -> unpacks and loads:
 ynfucvu.dll, function: ynfucvu-> perform all the malicious activities

installer.exe
 Unpacks several files into %APPDATA%/Local/Temp/

 It seems that not all of them play a role in unpacking the payload – some are dropped only to
make “noise”

[random].tmp , i.e.: nsn4CB0.tmp

https://blog.malwarebytes.org/wp-content/uploads/2015/07/rundll_open_ports.png
https://blog.malwarebytes.org/wp-content/uploads/2015/07/clients.png

7/13

pictures
script (javascript, YUI module): index(5).php
dalookerzmeoajrhja144
UncryptedStub._ini
[random].tmp/lithiasis.dll (i.e. nse474E.tmp/lithiasis.dll)

Then, it loads the dropped module: lithiasis.dll into memory and executes the function
called – in the analyzed case – Avidness (responsible for further unpacking).

lithiasis.dll, Avidness
 (real name of the module: __Intelerino.dll)

 – is unpacked and loaded by the installer.exe
 – is obfuscated

 – uses files:

dalookerzmeoajrhja144 – packed list of functions that are going to be loaded in order
to do further unpacking
UncryptedStub._ini – packed executable (I refer to it as: stub_unpacked.exe)

Keys used to decrypt the files:

dalookerzmeoajrhja144 – “dalookerzmeoajrhja144”
UncryptedStub._ini – “9JKjPZSpEL8uHmkHNlXhwhDc9jRTGN”

Files are encrypted with obfuscated, custom XOR based algorithms. For each file the used
algorithm is slightly different. Below you can see sample python scripts for decoding the files:

 Bunitu Proxy – decoding scripts (github)

#1 Decrypting functions

https://blog.malwarebytes.org/wp-content/uploads/2015/07/Temp_files.png
https://gist.github.com/hasherezade/430ecbdf2dd1f0d935be

8/13

def decode1(data, key, max_key):
 l = len(key)
 j = 0 #key index
 decoded = bytearray()
 for i in range(0, len(data)):
 decoded.append(data[i] ^ key[j % l])
 if (i > 0):
 j += 1
 if (j == max_key):
 j = 0
 return decoded

#2 Decrypting PE file

https://blog.malwarebytes.org/wp-content/uploads/2015/07/decrypt1.png

9/13

result – a new PE file (stub_unpacked.exe):

https://blog.malwarebytes.org/wp-content/uploads/2015/07/decrypt2.png
https://blog.malwarebytes.org/wp-content/uploads/2015/07/result_preview.png

10/13

def decode2(data, key, max_key):
 j = 0 #key index
 prev_j = 0
 decoded = bytearray()
 for i in range(0, len(data)):
 val = data[i] + prev_j
 val = ((val ^ key[j]) ^ key[prev_j]) % 256
 decoded.append(val)
 prev_j = j
 j = j + 1
 if (j == max_key):
 j = 0
 return decoded

After decrypting the new executable: stub_unpacked.exe – it loads it into the memory using
“RunPE” technique (unmaps the installer.exe and loads the new PE section by section on it’s
place).

stub_unpacked.exe
Its main role is to unpack from inside the “heart” of the malware: module ynfucvu.dll. It also
loads and deploys it.
Makes following registry keys (Winlogon Notify):

The key ‘zinkraxx’ is used to uniquely identify the installation. It is made by following simple
algorithm:

https://blog.malwarebytes.org/wp-content/uploads/2015/07/reg_zinkraxx.png

11/13

It uses RDTSC (an instruction that reads time-stamp counter into EDX:EAX). Then part of
the result (EAX) is processed and writen into a buffer. This buffer is then stored in the
registry.
After unpacking the DLL it drops it in %APPDATA%/Local folder:

Then, it loads in the memory and enters in the function ynfucvu of ynfucvu.dll – using JMP
EAX:

ynfucvu.dll, ynfucvu

This is the Bunitu Proxy module – malicious part of the full package. It is independent from
other modules. Once installed, it is loaded on system startup, using rundll32.exe. The entry
point is in the function ynfucvu.

https://blog.malwarebytes.org/wp-content/uploads/2015/07/zinkraxx_step2.png
https://blog.malwarebytes.org/wp-content/uploads/2015/07/dropped_ynfc.png
https://blog.malwarebytes.org/wp-content/uploads/2015/07/enter_in_DLL.png

12/13

It carries all the network operations – registers the client on the server, opens ports and
serves as a proxy.
Techniques used by the Bunitu Proxy module haven’t changed much from June 10th, when it
was described by Websense Security Lab. Even the xor-ed value is exactly same!

compare with the WebSense analysis:

https://blog.malwarebytes.org/wp-content/uploads/2015/07/xp_same_as_before.png
http://community.websense.com/blogs/securitylabs/archive/2015/06/10/large-malvertizing-campaign-leads-to-angler-ek-amp-bunitu-malware.aspx
https://blog.malwarebytes.org/wp-content/uploads/2015/07/xored.png

13/13

This module is slightly obfuscated – i.e. domains used to resolve C&Cs are given in a plain
text. Only their addresses are calculated on the fly – to make difficult finding where they are
referred. As we see below: the address of the string is calculated on the stack (this DLL is
always loaded on the same, predefined base – what makes calculation on the addresses
easy).

It is also responsible for creating registry keys used for persistence and tries to be invisible
for the firewall – by adding itself to the list of Authorized Applications (but effectiveness of it
varies depending on the version of Windows).

Analyzed sample

Original sample (installer) md5=542f7b96990de6cd3b04b599c25ebe57 ; payload
(ynfucvu.dll) md5=1bf287bf6cbe4d405983d1431c468de7

Conclusion

It seems that this malware is being actively distributed through various exploit kits. However,
the mutation of the core is not so fast, as we see our sample is very similar to the one
observed a month ago. Still, the used packing, composed of many layers gave it advantage
of low detection rates in early days after the release.

On the other hand, the good news is that it’s not an entirely stealthy piece of malware
(except on Windows XP), so a cautious user can notice some of the alarming symptoms.

Part II: Who’s Behind Your Proxy? Uncovering Bunitu’s Secrets

https://blog.malwarebytes.org/wp-content/uploads/2015/07/xp_yn_deobf_host_name.png
https://www.virustotal.com/en/file/14cf87a14700a36d19e4fb98034437adc054417facb45356f296fe0cfe5d28f4/analysis/
https://www.virustotal.com/en/file/a5090acf84510573ac48de030cf59400813a54cd4af42d1de4bcee9d6ee44cb0/analysis/
https://blog.malwarebytes.org/botnets/2015/08/whos-behind-your-proxy-uncovering-bunitus-secrets/

