
1/13

The Faulty Precursor of Pykspa's DGA
bin.re/blog/pykspas-inferior-dga-version/

Pyskpa is a worm that spreads over Skype. The malware has been relying on a domain
generation algorithm (DGA) to contact its command and control targets since at least
October 2013. Even though the C2 infrastructure seems to be long abandoned, there are still
many infected clients. Virustracker, who has been tracking Pyskpa since March, shows that
the DGA is still used by well over 50`000 infected clients. You can find a description of the
underlying DGA here.

A few days ago, Daniel Plohmann at Fraunhofer FKIE discovered new Pyskpa domains
within the ShadowServer feeds. He kindly provided me the sample, from which I reversed
the algorithm behind the newly found Pykspa domains. This short post first shows the
algorithm, then examines its properties in comparison with the other DGA version.

https://bin.re/blog/pykspas-inferior-dga-version/
https://virustracker.net/
https://bin.re/blog/the-dga-of-pykspa/

2/13

The characteristics and spread of the emerged DGA variant lead me to believe that it is the
predecessor of the other version. As shown later, the algorithm behaves in strange ways that
were probably not intended by the malware authors. I therefore refer to the DGA in this post
as the Precursor DGA, and call the other DGA the Improved DGA.

The Precursor DGA

The precursor DGA generates sets of 5000 distinct hostnames. It is seeded with the current
unix timestamp divided by 172800, which corresponds to a granularity of two days. Here’s an
implementation of the DGA in Python:

https://bin.re/blog/the-dga-of-pykspa/

3/13

from datetime import datetime
import argparse
from time import mktime

def get_sld(sld_len, r):
 a = sld_len ** 2
 sld = ""
 for i in range(sld_len):
 x = i*(r % 4567 + r % 19) & 0xFFFFFFFF
 y = r % 123456
 z = r % 5
 p = (r*(z + y + x)) & 0xFFFFFFFF
 ind = (a + p) & 0xFFFFFFFF
 sld += chr(ord('a') + ind % 26)
 r = (r + i) & 0xFFFFFFFF
 r = r >> (((i**2) & 0xFF) & 31)
 a += sld_len
 a &= 0xFFFFFFFF
 return sld

def dga(seed, nr_domains = 5000):
 tlds = ["biz", "com", "net", "org", "info", "cc"]
 r = seed
 for domain_nr in range(nr_domains):
 r = int(r ** 2) & 0xFFFFFFFF
 r += domain_nr
 r &= 0xFFFFFFFF
 domain_length = (r % 10) + 6
 sld = get_sld(domain_length, r)
 tld = tlds[r % 6]
 domain = "{}.{}".format(sld, tld)
 print(domain)

def generate_domains(date, nr):
 unix_timestamp = mktime(date.timetuple())
 seed = int(unix_timestamp // (2*24*3600))
 date_range = []
 for i in range(2):
 ts = (seed+i)*2*24*3600
 date_range.append(datetime.fromtimestamp(ts).strftime("%Y-%m-%d %H:%M"))
 t = "pykspa domains valid through {} - {}".format(*date_range)
 print("{}\n{}".format(t, "*"*len(t)))
 dga(seed, nr)

if __name__=="__main__":
 parser = argparse.ArgumentParser()
 parser.add_argument("-d", "--date", help="date for which to generate domains")
 parser.add_argument("-n", "--nr", help="nr of domains to generate", type=int,
default=5000)
 args = parser.parse_args()
 if args.date:

4/13

 d = datetime.strptime(args.date, "%Y-%m-%d")
 else:
 d = datetime.now()
 generate_domains(d, args.nr)

For example, these are the 20 first domains active at 2015-07-19 00:00:

./dga.py -n 20 -d 2015-07-19
pykspa domains valid through 2015-07-18 02:00 - 2015-07-20 02:00
**
kmambodsholapet.com
siaiheiq.biz
oagsesiugkeq.net
jshbzafox.org
xfawpafox.cc
kspongeoya.net
cmvccqeoya.info
sbtrssdsholapet.com
aumarenansnan.cc
yeuwwiiugkeq.biz
aolmbo.info
dxnydafox.cc
qmzmtufqbex.org
skxsiyeoya.net
ichnvyeoya.info
lopevkn.com
zjrckkn.com
oitykueoya.net
megsoeiq.net
zfdthsn.cc

Properties and Comparison with the Improved DGA

The following table compares some the properties of the precursor DGA to the improved
DGA.

Precursor DGA Improved DGA

seeding

Granularity is 2 days. Seed
corresponds to divided timestamp:

seed = int(unix_timestamp //
(2*24*3600))

Granularity of 20 days. Seed corresponds to
divided timestamp, passed through a
cryptographic function:

index = int(unix_timestamp//(20*3600*24))
seed = some_cryptographic_function(index)

noise domains

5/13

Precursor DGA Improved DGA

no noise domains Interleaves the usable domains with noisy
domains that are generated by the same DGA,
but with an unpredictable seed.

nr domains per run

5000 200 usable domains + 800 noisy domains

next random number

Uses repeated squaring, which lets
random number converge to two
values.

r = int(r ** 2) (mod 2^32)
r += domain_nr (mod 2^32)

Uses increasingly larger increments. No
convergence.

r += (r % (domain_nr + 1) + 1) (mod 2^32)

next second level domain length

Length of second level domain is
between 6 and 15 characters:

domain_length = (r % 10) + 6

Length of second level domain is between 6
and 12 characters:

domain_length = ((r + domain_nr) % 7) + 6

second level domain algorithm (all
calculations mod 2^32)

Random number is right shifted after
each letter, leading to convergence at
the end of domain names.

a = sld_len ** 2
sld = ""
for i in range(sld_len):
 index = (a + (r*(r % 5 + r %
123456 +
 i*(r % 4567 + r % 19))) +
 i*(r % 4567 + r % 19)))) % 26
 a += sld_len
 r = (r + i)
 r = r >> (((i**2) & 0xFF) & 31)
 sld += chr(ord('a') + index)

No visible randomness decay for the later
letters in domains, otherwise very similiar.

a = sld_len ** 2
sld = ""
modulo = 541 * sld_len + 4
for i in range(sld_len):
 index = (a + (r*((r % 5) + (r % 123456) +
 i*((r & 1) + (r % 4567))))) % 26
 a += sld_len;
 r += (((7837632 * r * sld_len)) +
 82344) % modulo;
 sld += chr(ord('a') + index)

top level domain algorithm

6/13

Precursor DGA Improved DGA

Random pick from 6 top level domains:

tlds = ["biz", "com", "net", "org",
 "info", "cc"]
tld = tlds[r % 6]

Random pick from 4 top level domains,
although 5 domains are hardcoded.

tlds = ['com', 'net', 'org', 'info', 'cc']
tld = tlds[r % 4]

Both DGAs are very similar. The precursor DGA has a defective random number generators
though:

1. Within the main loop: changing the random number for each domains; the problem lies
with r = int(r ** 2).

2. Within the code to generate the second level domains: changing the random number
for each letter; the culprit here is r >> (i**2).

The defects cause a drastic loss of randomness the more random numbers are generated.
For example, here are some of the domains whose second level domain has 15 characters:

kmambodsholapet.com
sbtrssdsholapet.com
srjukodsholapet.org
izbqukdsholapet.com
ybdetodsholapet.com
mgesbsdsholapet.org
uafudkdsholapet.cc
wrsxuodsholapet.com
ycokbodsholapet.org
ckocgkdsholapet.org
yndccsdsholapet.cc
slwcnodsholapet.cc
anljvkdsholapet.cc
oznevadsholapet.org
ewgxsodsholapet.cc
wigiakdsholapet.com
mvomnkdsholapet.com
wvmqfodsholapet.cc

While the beginning of the domain is pretty divers, after the sixth letter always follows
“dsholapet”. This is true for all 15 letter domains, making for a pretty solid network detection
rule.

The other defect, i.e., repeatedly squaring the random number, is arguably even worse. It
causes the random number to converge to one of two values, depending on the sign of the
initial seed. Although the malware authors probably wanted to have a fresh set of 5000

7/13

domains every two days, the convergence causes all but the first 19 domains to be very
consistent, only ever alternating between the same two sets of domains. The following image
illustrates this behavior:

Every saturated color represents a new, yet unseen domain. The desaturated colors stand
for revisited domains. As expected, every second day reuses the domains of the previous
day, in accordance with the granularity of 2 days. The first 9 domains change after 48 hours,
as desired. The later domains, however, increasingly revisit older domains, up to the point
where no new domains are generated.

8/13

The next picture evaluates the domains over one year in increments of four days. A blue
square represents a new domain, while a grey square represents a revisited domain. Clearly
all domains after 19 stay the same. But already the second domain now and then reuses an
older domain:

9/13

10/13

11/13

12/13

Conclusion

The precursor DGA is very similiar to the improved version, yet suffers from bad random
number generators. The DGA still got deployed in the wild, as the following screenshot of
Virustracker shows:

However, the number of hits is only about 600, compared to over 60'000 of the improved
DGA:

13/13

