
1/4

Linux.Rekoobe.1
vms.drweb.com/virus/

SHA1

a11bda0acdb98972b3dec706d35f7fba59587f99 (SPARC)
04f691e12af2818015a8ef68c6e80472ae404fec (SPARC)
466d045c3db7c48b78c6bb95873b817161a96370 (SPARC)
cd274e6b73042856e9eec98d258a96cfbe637f6f (Intel x86)
8e93cfbaaf7538f8965080d192df712988ccfc54 (Intel x86-64)

A Trojan for Linux intended to infect machines with the SPARC architecture and Intel x86,
x86-64 computers. The Trojan’s configuration data is stored in a file encrypted with XOR
algorithm. The directory of the file may be the following:

/usr/lib/liboop-trl.so.0.0.0
/usr/lib/libhistory.so.5.7
/usr/lib/libsagented.so.1
/usr/lib/libXcurl
/usr/lib/llib-llgrpc

The file has the following structure:

https://vms.drweb.com/virus/?i=7754026&lng=en

2/4

SECRET value
MAGIC value
PROXYHOST value
PROXYPORT value
USERNAME value
PASSWORD value
ENDPOINT value
SERVER_PORT value
CONNECT_BACK_DELAY value

Instead of the “value” variable, it contains the value of the corresponding parameter. Once
data from the configuration file is received successfully, the Trojan refers to the C&C server
for commands with an interval specified by the CONNECT_BACK_DELAY parameter. The
address of the server is specified by the ENDPOINT parameter. If a value of the
PROXYHOST parameter is not “none”, connection to the server is established via a proxy
server, authorization data for which is also extracted from the configuration file.

The connection to the C&C server begins with sending of the MAGIC parameter from the
configuration file and reception of a 40-byte response. Then 40 bytes are split into two
blocks, which are used for AES context initialization: one block is for the received data, and
the other, for the sent one:

int __cdecl AES_Init(st_aes_ctx *aes_ctx, char *data, char *salt)
{
 ...
 if (RecvPacket(fd, buffer, 40, 0) != 1)
 goto err_occured;
 *(_DWORD *)dec_salt = *(_DWORD *)buffer;
 *(_DWORD *)&dec_salt[4] = *(_DWORD *)&buffer[4];
 *(_DWORD *)&dec_salt[8] = *(_DWORD *)&buffer[8];
 *(_DWORD *)&dec_salt[12] = *(_DWORD *)&buffer[12];
 *(_DWORD *)&dec_salt[16] = *(_DWORD *)&buffer[16];
 *(_DWORD *)enc_salt = *(_DWORD *)&buffer[20];
 *(_DWORD *)&enc_salt[4] = *(_DWORD *)&buffer[24];
 *(_DWORD *)&enc_salt[8] = *(_DWORD *)&buffer[28];
 *(_DWORD *)&enc_salt[12] = *(_DWORD *)&buffer[32];
 *(_DWORD *)&enc_salt[16] = *(_DWORD *)&buffer[36];
 AES_Init(&aes_ctx_encrypt, secret, enc_salt);
 AES_Init(&aes_ctx_decrypt, secret, dec_salt);
 ...
}

where the AES_Init function generates an encryption key based on the SHA1 value from the
“secret” parameter and the sent enc_salt or dec_salt block:

3/4

int __cdecl AES_Init(st_aes_ctx *aes_ctx, char *data, char *salt)
{
 ...
 sha1_init(&ctx);
 sha1_update(&ctx, data, strlen(data));
 sha1_update(&ctx, salt, 0x14u);
 sha1_final(&ctx, hash);
 AES_InitKey(aes_ctx, hash, 128);
 ...
}

The AES_Init function for every AES context also creates two special 40-byte blocks which
are later used as a signature. For that, 40 bytes with 0x36 value are added to the verify_1
array, and 40 bytes with 0x5C value are added to the verify_2 array. Then the first 20 bytes
of every array are encrypted with XOR algorithm containing the corresponding 20 bytes of
the AES key.

All the later information transmitted either side during the established connection will be sent
as specifically formed packages.

The first received package contains 16-byte identifier. The Trojan compares it with an
identifier already stored in its body. If the match is found, the malware sends verification to
the server.

Once the connection to the C&C server is established, the Trojan attempts to get a command
from the server. Upon receiving a command number, the first two bytes are ignored, and the
third one stands for a command identifier.

During the reception of a package from the server, the malware acquires 16 bytes, which are
encrypted in AES-CBC-128 mode. The first WORD (MSB) of the received buffer is the size of
the next data block (the size parameter).

After this, the Trojan calculates the package size by the “packetsize = size + 2 bytes +
alignment” formula and receives the data of packetsize + 4 bytes size in the same buffer
using offset of 0x10 bytes from its beginning. The last 20 bytes are the signature.

In order to verify the signature, the modification of its first DWORD is as follows: the first
three bytes are replaced with zeros, and the forth one contains the package number (the
Trojan records the amount of the received and sent packages in the corresponding AES
contexts). Then the buffer that received the data and where DWORD was modified is used
for generating of SHA1 hash (buffer is specified as “buffer”):

4/4

...
sha1_init(&sha1_ctx);
sha1_update(&sha1_ctx, aes_ctx_decrypt.verify_1, 0x40u);
sha1_update(&sha1_ctx, buffer, size + 4);
sha1_final(&sha1_ctx, &hash);
sha1_init(&sha1_ctx);
sha1_update(&sha1_ctx, aes_ctx_decrypt.verify_2, 0x40u);
sha1_update(&sha1_ctx, &hash, 0x14u);
sha1_final(&sha1_ctx, &hash);
...

It should be noted that only a payload and a DWORD value that contains the package
number are hashed. 4 DWORDs of the signature are not included in the hashed data.

The first 20 bytes of the received hash are compared with a package signature. If the match
is found, the package is decrypted. If not, it is considered invalid.

Sending of the package to the server is performed in the same way.

The Trojan can execute three commands:

Reverse Shell (cmd == 0x03)
Download a file (cmd == 0x02)
Upload a file to the command and control server (cmd == 0x01)

News about the Trojan

http://news.drweb.com/show/?i=9732

