
1/13

hasherezade November 4, 2015

A Technical Look At Dyreza
blog.malwarebytes.com/threat-analysis/2015/11/a-technical-look-at-dyreza/

In a previous post we presented unpacking 2 payloads delivered in a spam campaign. A
malicious duet – Upatre (malware downloader) and Dyreza (credential stealer). In this post
we will take a look at the core of Dyreza – and techniques that it uses.

Note, that Dyreza is a complex piece of malware and various samples come with various
techniques – however, the main features remain common.

Analyzed samples

ff3d706015b7b142ee0a8f0ad7ea2911 – Dyreza executable- a persistent botnet agent,
carring DLLs with the core malicious activities

5a0e393031eb2accc914c1c832993d0b – Dyreza DLL (32bit)
91b62d1380b73baea53a50d02c88a5c6 – Dyreza DLL (64 bit)

Behavioral analysis

When Dyreza starts to infect the computer – it spreads like fire. Observing it in Process
Explorer, we can see many new processes appearing and disappearing. As we can notice, it
deploys explorer, svchost, taskeng… All this is done in order to obfuscate the flow of
execution, in hopes of confusing analyst.

https://blog.malwarebytes.com/threat-analysis/2015/11/a-technical-look-at-dyreza/
https://blog.malwarebytes.org/intelligence/2015/10/unpacking-fraudulent-fax-dyreza-malware-from-spam/
https://www.virustotal.com/en/file/4853906a5ff7b3984d7536d469129a4905d68e8b8cbde75fbef022954a09b89f/analysis/
https://www.virustotal.com/en/file/28db05ba075dd262878dcc4a16e639b197ffb45814d94b844820a173f8e68ce5/analysis/1446569055/#
https://www.virustotal.com/en/file/49bf12a39c7634ca1cc2e82644de6a4c297879be883c5c1ab3ae1494eca2bc21/analysis/1446569125/

2/13

2 copies of the malicious file are dropped – in C:\Windows and %APPDATA% – under
pseudo-random names, matching the regex: [a-zA-Z]{15}.exe , i.e vfHNLkMCYaxBGFy.exe

That persistence is achieved by adding a new task in the task scheduler – it deploys the
malicious sample after every minute, to ensure that it keeps running.

Code injected into other processes (svchost, explorer) communicates with the C&C:

Checking on VirusTotal we can confirm, that contacted servers have been reported as
malicious:

141.8.226.14 -> https://www.virustotal.com/en/ip-address/141.8.226.14/information/
83.241.176.230 -> https://www.virustotal.com/en/ip-
address/83.241.176.230/information/
197.231.198.234 -> https://www.virustotal.com/en/ip-
address/197.231.198.234/information/

When we deploy any web browser, it directly injects the code into its process and deploys
illegitimate connections.It is the way to keep in touch with the C&C, monitor user’s activity
and steal credentials.

We can also see files created in a TEMP folder that are serving as a small database, where
Dyreza stores information, before they are sent to the C&C.

Inside the code

https://blog.malwarebytes.org/wp-content/uploads/2015/10/task_persistance.png
https://blog.malwarebytes.org/wp-content/uploads/2015/11/dyreza_connections.png
https://blog.malwarebytes.org/wp-content/uploads/2015/11/explorer_inject.png
https://www.virustotal.com/
https://www.virustotal.com/en/ip-address/141.8.226.14/information/
https://www.virustotal.com/en/ip-address/83.241.176.230/information/
https://www.virustotal.com/en/ip-address/197.231.198.234/information/

3/13

Main executable

Dyreza doesn’t start on a machine that has less than 2 processors. This technique is used as
a defense, preventing file from running on VM. It is based on the observation that VM usually
have only one processor – in contrast to most physical machines used nowadays. It is
implemented by checking appropriate field in PEB (Process Environment Block), that is
pointed by FS:[30]. Infection continues only if the condition is satisfied.

At the beginning of execution, malware loads additional import table into a newly allocated
memory page. Names of modules and functions are decrypted at runtime.

It checks, if it is deployed under debugger – using function LookupPrivilegeValue with
argument SeDebugPrivilege – if it returns non-zero value, execution is terminated.

https://en.wikipedia.org/wiki/Process_Environment_Block
https://en.wikipedia.org/wiki/Win32_Thread_Information_Block
https://blog.malwarebytes.org/wp-content/uploads/2015/11/current_process_seDebug.png

4/13

Valid execution follows few alternative paths. Decision, by which path of to follow is made
based on the initial conditions – like, executable path and arguments with which the program
was run. When it is deployed for the first time (from a random location), it make its own copy
into C:\Windows and %APPDATA% and deploy the copy as a new process. As an
argument to a deployed copy (from C:\Windows) it passes a path to the other copy.

If it is deployed from the valid path and the initial argument passed validation, it performs
another check – verifying if it is deployed for the first time. It is achieved by creating a
specific Global mutex (it’s name is a hash of Computer name and OS Version – fetched by
functions: GetComputerName, RtlGetVersion).

If this condition is also satisfied and mutex already exist, then it follows the main path,
deploying the malicious code. First, the encrypted data and the key are loaded from the
executable’s resources.

T1RY615NR – encrypted 32 bit code, UZGN53WMY – the key, YS45H26GT – encrypted 64bit code

Unpacking:

https://blog.malwarebytes.org/wp-content/uploads/2015/11/resources.png

5/13

The unpacking algorithm is pretty simple – key_data contains values and data – list of
indexes of the values in key_data. We process the list of indexes and read the corresponding
values:

def decode(data, key_data):
 decoded = bytearray()
 for i in range(0, len(data)):
 val_index = data[i]
 decoded.append(key_data[val_index])
 return decoded

This script decrypts dumped resources:

https://github.com/hasherezade/malware_analysis/blob/master/dyreza/dyreza_decoder.py

The revealed content contains a shellcode to be injected and a a DLL with malicious
functions (32 or 64 bit appropriately). The main sample chooses which one to unpack and
deploy, by checking if it is running via WOW64 (emulation for 32 bit on 64 bit machine) –
calling function IsWow64Process.

https://blog.malwarebytes.org/wp-content/uploads/2015/11/res3_decoded.png
https://github.com/hasherezade/malware_analysis/blob/master/dyreza/dyreza_decoder.py

6/13

Malicious DLL (core)

At this stage, functionality of the malware becomes pretty clear. The DLL does not contain
much obfuscation – it has clear strings and a typical import table.

We can see the strings that are used for communication with the C&C:

https://blog.malwarebytes.org/wp-content/uploads/2015/11/resource_decide.png
https://blog.malwarebytes.org/wp-content/uploads/2015/11/strings.png

7/13

Both – 32 and 64 bit DLLs have analogical functionality. Only architecture-related elements
and strings are different.

The agent identifies the system:

and then – include this data in information sent to the C&C:

https://blog.malwarebytes.org/wp-content/uploads/2015/11/check_sys.png

8/13

Similar procedure is present in the 64 bit version of the DLL, only the hardcoded string
“_32bit” is substituted by “_64bit”:

Also, network settings are examined (to verify and inform the C&C whether the client can
establish back connection – command : AUTOBACKCONN)

https://blog.malwarebytes.org/wp-content/uploads/2015/11/sys_check.png
https://blog.malwarebytes.org/wp-content/uploads/2015/11/64bit.png

9/13

It targets following browsers:

Below – attempt to send stolen account credentials:

https://blog.malwarebytes.org/wp-content/uploads/2015/11/network_settings_detect.png
https://blog.malwarebytes.org/wp-content/uploads/2015/11/attacks_edge.png

10/13

In addition to monitoring browsers, it also collects general information about the computer
(it’s hardware, users, programs and services) – in form of a report:

https://blog.malwarebytes.org/wp-content/uploads/2015/11/accounts_steal.png
https://blog.malwarebytes.org/wp-content/uploads/2015/11/grab_generalinfo.png

11/13

The malware not only steal information and sniff user’s browsing, but also tries to take a full
control over the system – executes various shell commands – system shutdown,etc. Some
examples below:

Trying to add a user with administrative privileges

Shutdown system on command (AUTOKILLOS)

C&Cs

https://blog.malwarebytes.org/wp-content/uploads/2015/11/add_user.png
https://blog.malwarebytes.org/wp-content/uploads/2015/11/shutdown_sys.png

12/13

This botnet is prepared with great care. Not only communication is encrypted, but also many
countermeasures have been taken in order to prevent detection.

First of all, the address of the C&C is randomly picked from a hard-coded pool.This pool is
stored in one of the resources of Dyreza DLL (AES encrypted). Below, we can see how it
gets decrypted, during execution of the payload:

(A script for decrypting list of C&Cs from dumped resources is available here:
https://github.com/hasherezade/malware_analysis/blob/master/dyreza/dyrezadll_decoder.py)

Also, the certificate served by a particular C&C changes on each connection. The
infrastructure is built on the network of compromised WiFi routers (most often: AirOS,
MicroTik).

The server receives encrypted connection on port 443 (standard HTTPS) or 4443 (in case if
standard HTTPS port of a particular router is occupied by a legitimate service).

Conclusion

Dyreza is an eclectic malware, developed by professionals. It is clear that they are constantly
working on a quality – each new version carries some new ideas and improvements, making
analysis harder.

Appendix

https://blog.malwarebytes.org/wp-content/uploads/2015/11/decrypted_cnc.png
https://github.com/hasherezade/malware_analysis/blob/master/dyreza/dyrezadll_decoder.py

13/13

Very good Dyreza/Upatre tracker: https://techhelplist.com/maltlqr/ – by
@Techhelplistcom (list of C&Cs from the current sample:
https://techhelplist.com/maltlqr/reports/01oct-20oct-status.txt)
Scripts used in this post:
https://github.com/hasherezade/malware_analysis/tree/master/dyreza

https://techhelplist.com/maltlqr/
https://twitter.com/Techhelplistcom
https://techhelplist.com/maltlqr/reports/01oct-20oct-status.txt
https://github.com/hasherezade/malware_analysis/tree/master/dyreza

