
1/8

malware-kitten

securitykitten.github.io/_posts/2015-11-16-logpos-new-
point-of-sale-malware-using-mailslots.md

github.com/malware-kitten/securitykitten.github.io/blob/master/_posts/2015-11-16-logpos-new-point-of-sale-malware-
using-mailslots.md

Cannot retrieve contributors at this time

layout title excerpt date

category-
post

Introducing
LogPOS

New Point of Sale
Malware Using Mailslots

2015-11-15
16:00:00 -0800

Introduction

There has been an explosion in POS malware in the last year. At
Morphick, Nick Hoffman and I found 2 undiscovered families in 2014 and
we just found our first new family of 2015. This new malware which we're
calling LogPOS has several notable differences from recent POS malware.

The hash that we'll be pulling apart in this post is
af13e7583ed1b27c4ae219e344a37e2b .

https://github.com/malware-kitten/securitykitten.github.io/blob/master/_posts/2015-11-16-logpos-new-point-of-sale-malware-using-mailslots.md

2/8

Diving In

Almost immediately when looking at this sample, a string jumped out -
\\.\mailslot\LogCC .

In most POS variants, one process scrapes memory from other processes
and writes discovered track data to a log. Because LogPOS injects code
into various processes and has each of them search their own memory, it
can’t use a log, since they can’t all open the same file with write access at
once. Instead, it uses mailslots.

Using mailslots for communication/storage isn't a new mechanism for
malware, in FireEye's report on APT28 there is mention of the group using
a mailslot with a name of check_mes_v5555 . Mailslots are an IPC
mechanism allowing multiple clients to send messages to a server. In this
case, the main executable creates the mailslot and acts as the mailslot
server, while the code injected into the various processes acts as a client,
writing carved credit card numbers to the mailslot for direct transmission to
the C2.

Early in the execution of the program, there is a call to CreateMailslotA
with an mailslot name of \\.\mailslot\LogCC .

If the mailslot fails to be created, the program will exit. If the mailslot
succeeds the program will enter an infinite loop performing the following
functions.

The most interesting thing is the injected code, so we'll look at that in more
detail below.

 Sleeping 500 milliseconds
 Iterating over processes
 Comparing against a whitelist
 Inject shellcode into the process (if not in whitelist)
 Scanning for credit card track information
 Validation using Luhn's
 Reading from the mailslot
 POST'ing out the data

https://github.com/malware-kitten/securitykitten.github.io/blob/master/images/logpos1.jpg

3/8

While iterating over the processes (as mentioned above) the malware will
check the process name against a whitelist containing the following
names.

windbg.exe
logounui.exe
taskmgr.exe
skype.exe
thunderbird.exe
devenv.exe
steam.exe
winlogon.exe
wininit.exe
csrss.exe
smss.exe
svchost.exe
firefox.exe
chrome.exe
explorer.exe
psi.exe
pidgin.exe
System

The code to compare the strings can be seen below:

4/8

Once a program that is not in the whitelist is found, code is injected into it's
memory space using WriteProcessMemory. The first thing that this
shellcode does is crawl to find the base of kernel32, this is used to start
building imports. The method for finding kernel32 is a well documented
one that has been discussed in many research blogs.

Once the base is found, the shellcode will begin to rebuild it's imports via
it's own hashing technique. A list of some of the hashes and their values
are:

https://github.com/malware-kitten/securitykitten.github.io/blob/master/images/logpos2.jpg
https://github.com/malware-kitten/securitykitten.github.io/blob/master/images/logpos3.jpg

5/8

After building the imports, the malware will call CreateFileA with a filename
of \.\mailslot\LogCC to obtain a handle for writing.

https://github.com/malware-kitten/securitykitten.github.io/blob/master/images/logpos4.jpg
https://github.com/malware-kitten/securitykitten.github.io/blob/master/images/logpos5.jpg

6/8

When scanning memory, the malware will use a custom search to find
common sentinels for track information.

Information is passed to an implementation of Luhn's algorithm for
validation. Once hits are located, they are sent to the mailslot where the
main program will read them. When a number is added (on a schedule)
the malware will build a format string and post the information to a remote
site. (Note, the site has been redacted, due to live numbers currently being
posted there)

The data is then sent to a remote site (via HTTP GET)

https://github.com/malware-kitten/securitykitten.github.io/blob/master/images/logpos6.jpg
https://github.com/malware-kitten/securitykitten.github.io/blob/master/images/logpos7.jpg

7/8

The results are populated in a table (at the time of this writing the form is
not password protected and the results can be seen). A majority of the hits
are in the process space of rdpclip and notepad leading us to believe that
the author is currently testing their code. A screenshot of the panel with
IP's can be seen below:

Detection

LogPOS avoids a traditional detection mechanism of scanning files for
unencrypted credit card information by instead writing to a mailslot.
However, using a tool like yara, it is easy to detect variants of this
malware. The following rule will assist in finding this malicious tool on your
network.

rule LogPOS
{
 meta:
 author = "Morphick Security"
 description = "Detects Versions of LogPOS"
 md5 = "af13e7583ed1b27c4ae219e344a37e2b"
 strings:
 $mailslot = "\\\\.\\mailslot\\LogCC"
 $get = "GET /%s?encoding=%c&t=%c&cc=%I64d&process="
 //64A130000000 mov eax, dword ptr fs:[0x30]
 //8B400C mov eax, dword ptr [eax + 0xc]
 //8B401C mov eax, dword ptr [eax + 0x1c]
 //8B4008 mov eax, dword ptr [eax + 8]
 $sc = {64 A1 30 00 00 00 8B 40 0C 8B 40 1C 8B 40 08 }
 condition:
 $sc and 1 of ($mailslot,$get)
}

https://github.com/malware-kitten/securitykitten.github.io/blob/master/images/logpos8.jpg
https://github.com/malware-kitten/securitykitten.github.io/blob/master/images/logpos9.jpg

8/8

In addition to yara, this POS malware can be detected with its URI pattern.
The following bro signature will detect this malware from a network
perspective.

Conclusion

POS malware has been getting attention on a lot of fronts. TrendMicro
recently reported that there have been more new POS variants discovered
in the last 6 months than the last several years.

For example, earlier this year Josh Grunzweig uncovered a new variant of
Alina (dubbed Eagle), and Trustwave documented another new version
(dubbed Spark). While all this was going on, new families like Getmypass,
LusyPOS, Daredevil, NewPOSThings, and Backoff were just starting to be
discovered.

Despite the ongoing efforts to curb POS malware from being successful,
this seems to be an area where there is no slowing down.

signature LogPOS {
 #source: Morphick Security
 #version: 1
 #Ref: af13e7583ed1b27c4ae219e344a37e2b
 ip-proto == tcp
 dst-port == 80,443
 http-request
/.*encoding\=.*\&t\=.*\&cc\=.*\&process\=.*\&track\=/
 event "LogPOS Credit Card GET Request Pattern"
}

