
1/7

Shining the Spotlight on Cherry Picker PoS Malware
trustwave.com/Resources/SpiderLabs-Blog/Shining-the-Spotlight-on-Cherry-Picker-PoS-Malware/

Loading...

Blogs & Stories

SpiderLabs Blog

Attracting more than a half-million annual readers, this is the security community's go-to destination for
technical breakdowns of the latest threats, critical vulnerability disclosures and cutting-edge research.

Introduction

For the last five years Trustwave has been monitoring a threat across a number of forensic cases that we have
dubbed "Cherry Picker". This targeted Point of Sale (PoS) memory scraper has enjoyed a very low detection
rate in the wild for quite some time. Cherry Picker uses a new memory scraping algorithm, a file infector for
persistence, and cleaner malware that removes all traces of the infection from target systems. This
sophisticated functionality and highly targeted victims have helped the malware remain under the radar of
many AV and security companies. This post will expose the functionality of Cherry Picker and hopefully help
organizations provide protection from this threat.

The Past

In 2011 Trustwave's forensic analysts worked on a case involving several pieces of malware that worked in
concert to obtain Card Holder Data (CHD) from memory of the target process.

https://www.trustwave.com/Resources/SpiderLabs-Blog/Shining-the-Spotlight-on-Cherry-Picker-PoS-Malware/


2/7

Filename Hash
Compile
DateFilename Hash
Compile
Date

searcher.dll B532B2C489EC2989AA976151D9E3878323B9AAD20AF0DC8538F1B30379449162 2009-11-
05
20:12:18

sr.exe E81D12CB40A32A233780328D0BB73598D393C47049847DBBA24881DE034BF938 2009-11-
05
20:12:12

Sr.exe is a command line interface that accepts n Process IDs (PID) and injects the searcher.dll into each
process. Searcher.dll looks for CHD in the injected process and writes out the found data to a plain text file as
%WINDIR%\system32\Data.txt directory. These samples are fairly well detected with both files being flagged
by a large number of AVs as a generic banking Trojan or Point of Sale (PoS) memory scraper. However, this
tool set never seems to be alone on the system. Our investigations have found it being used with, or
embedded in, an AutoIt script such as fishnetsecurity discusses. TrendMicro found it in use with another PoS
memory scraper called Rdasrv. Trustwave's malware researchers presented this threat at the Sector
conference detailing exactly how they worked as well as including both Cherry Picker and Searcher artifacts in
a SANS course: Sniper Forensics.

So not exactly under the radar huh? Okay, fair enough. Just like in all the infomercials we get to the part you all
know… BUT WAIT! There's more.

Cherry Picker

Cherry Picker is a set of malware that has also been seen on systems in conjunction with searcher.dll;
however, unlike Searcher it has gone largely unnoticed by the AV and security community. While Searcher has
remained unchanged on the various cases it has been seen on, Cherry Picker has undergone consistent
improvement over the years. So what is Cherry Picker exactly? There are essentially been 3 versions of the
main malware:

Filename: Pserver32.dll

Version Hash
Compile
Date

1 CB71B31AF4BC5A5D3F541BEFF87ECBFD55F24BA7AD6249484608E359D880F2DD 2009-
12-05
05:12:21

2 AC1837B37A495BEDF644A2824CD36F2BFB34CAD122C26E1FE497146A8F2A16A4 2010-
03-04
13:22:59

3 3F366CCED9473CFBEDA0245F5817699D5BEB81D0AB4D2C81E1E3DCB7DCE7465D 2015-
02-01
01:13:33

If this were a legitimate development project these versions would be minor version updates. Each one adds a
small amount of functionality to the previous version.

Loading

https://www.fishnetsecurity.com/6labs/blog/autoit-scripting-pos-malware
http://www.trendmicro.com/vinfo/us/threat-encyclopedia/malware/troj_banker.qpa
http://sector.ca/portals/17/Presentations12/Josh%20Grunzweig%20-%20Ryan%20Merritt%20-%20Targeted%20Malware%20Attacks%20-%20Sophisticated%20Criminals%20or%20Babytown%20Frolics%20-%20Sector%202012.pdf
https://files.sans.org/summit/forensics11/PDFs/Sniper%20Forensics-Target%20Acquisition.pdf


3/7

Before we can talk about the meat of Cherry Picker's functionality, we need to take a look at how the DLL is
loaded into memory. In the searcher.dll case, sr.exe was used to inject the scraper into the memory of a target
running process. No persistence was used to perform this function automatically. Cherry Picker has two
different ways to install persistence. In several of the cases, a registry file was discovered, that when ran
added pserver32.dll the following registry key:

[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Windows]

"AppInit_DLLs"="pserver32.dll"

From the Microsoft support site:

"The AppInit_DLLs are loaded by using the LoadLibrary() function during the
DLL_PROCESS_ATTACH process of User32.dll. Therefore, executables that do not link with User32.dll does
not load the AppInit_DLLs. There are very few executables that do not link with User32.dll."

In order for the DLL to be loaded from the AppInit_DLLs registry key, it must be "turned on". This is
accomplished by setting the following registry key to 1:

[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Windows]

"LoadAppInit_DLLs"=0x00000001

This causes numerous applications to load the malicious DLL at startup. On the most recent case our analysts
found an additional install mechanism that greatly increased the options available to the attacker. The author
upgraded sr.exe to srf.exe:

srf.exe 7AB1F21B41134FF21476760434569383D8FD55D444DF035C900F330B13F70CBD 2010-03-
02
16:35:23

Srf requires that the first argument match a hardcoded string ("password") in the binary. This may help it
prevent AVs from marking it as malware since it exits without performing any malicious activity. Srf provides a
handy usage to show what options are available to install the malware:

The injection option is still here, although it has been expanded to include the ability to inject into all running
processes, processes by name, or processes by PID. They can also install/uninstall a variable DLL name into
the AppInit_DLLs registry key (which is what they mean by autorun). Then there is the patch DLL option. This
option is a sophisticated file infector that patches the legitimate user32.dll on disk to first load the malicious
DLL provided in the option before continuing on with the legitimate functionality of the system DLL. Srf uses a
little known legitimate function of windows (sfc_os.dll #5) to disable system write protection on all 3 versions of
user32.dll stored on the system. The legitimate copy is then copied to the same directory under user32.tmp
before adding a DllEntryPoint to user32.dll with malicious code to load the supplied DLL.

This is the entry point for the legitimate user32.dll:

https://www.trustwave.com/images/slblog-03-02-2018-10-57-10/spiderlabs/d469408d-8de1-4ceb-b4cf-7ad9b12c43a5.png


4/7

After the modification, the new entry point is DllEntryPoint:

Every time user32.dll is loaded by an application, pserver32.dll is loaded first and then the legitimate code is
executed. This has basically the same effect as AppInit_DLLs registry key but without leaving the tell tale
traces that can be found by a forensic analyst. The majority of Windows executables load user32.dll.

The Config

The first thing the malware does is look for a hardcoded filename in the current working directory that contains
configuration information. In version 1 the config file was name graph32.dll and was a plaintext file with the
header "[config]". The lines after that contain "key=value" pairs that set options available to the malware. The
API GetPrivateProfileIntA and GetPrivateProfileStringA are used to parse the plain text file and obtain the
configuration values. In version 2 a new type of config file was introduced and the hardcoded filename
changed to: kb852310.dll. While the plain text config was still supported, if the malware doesn't find the "
[config]" header it will attempt to decode the file using a custom de-obfuscation algorithm. I have reversed this
algorithm and written a python script, which writes out the de-obfuscated config to disk. The script can be
found here. The plain-text config and the obfuscated config are parsed in two different manners but contain
essentially the same information. The one difference is the obfuscated config can contain a public key, which
will allow Cherry Picker to encrypt CHD before writing it to the exfiltration file. Both configs contain the following
fields:

Target Process Process name to target for injection

https://www.trustwave.com/images/slblog-03-02-2018-10-57-10/spiderlabs/94afde52-75e8-474a-9b46-e9389509fb16.png
https://www.trustwave.com/images/slblog-03-02-2018-10-57-10/spiderlabs/3d2024c2-9fcc-4b5f-b172-44c850f5976d.png
https://github.com/SpiderLabs/malware-analysis/blob/master/Python/CherryPicker/cherryConfig.py


5/7

FTP Username Username for logging into FTP server

FTP Password Password for logging into FTP server

FTP Host Hostname/IP for FTP server

FTP Passive Use FTP Passive mode

RAR Password Password for creating encrypted RAR archives

RAR Template Naming template for encrypted RAR archives

CHD dump file location Full path to CHD file ex: C:\Windows\system32\sysss.dll

Time What time to perform exfiltration of dump files. Ex: time=2045 (8:45PM)

Timeout Time to wait before scraping memory

This is how Cherry Picker came by its name. The configuration specifies a target process that it expects to be
loaded in. If the parent process does not match the name specified by this field the malware will exit. This
implies that the malware author already has scouted the system and knows exactly what process they are
targeting. Just like a cherry picker in basketball, Cherry Picker all the other processes on the system to target
one process and go after that sweet, sweet card data.

Off and Running

Once the malware has loaded the configuration file and verified that it is running in the correct process, a
mutex is created. This prevents multiple copies from spawning on the system and synchronizes the collection
of CHD and the exfiltration of files. In version 1 and 2 the hardcoded mutex was:

Global\\Srch1Mutex

Version 3 changed the name to:

Global\\SYNC32TOOLBOX

The malware runs two threads. The first thread is responsible for finding the CHD in the process, writing the
results to a file, and preparing the files for exfiltration. The location of the exfiltration file, time to perform the
exfiltration, and destination are all contained in the configuration file.

Cherry Picker enumerates the files in the %WINDIR%\System32 directory and builds a list of all .rar files that
are found. It then begins to loop through the memory of the target process looking for CHD and writing it out to
the file specified by the config for exfiltration. In version 3 of the malware, the author introduces a new
technique for scraping memory using the API QueryWorkingSet. We will be releasing a follow up to this blog
tomorrow detailing this technique.

If a public key is in the config, the data in encrypted before writing it to the exfiltration file, otherwise it is written
in plain text. Once the system time matches the exfiltration time listed in the configuration file, the malware will
add the file containing the CHD to an encrypted archive using the following command:

rar m <template_rar_filename> <exfil_file> 0 -y -hp<password>

This thread will then release the mutex and sleep for 15 seconds plus the configured sleep timer. It will then re-
acquire the mutex and repeat the above process indefinately.

https://www.trustwave.com/Resources/SpiderLabs-Blog/Shining-the-Spotlight-on-Cherry-Picker-PoS-Malware/


6/7

The second thread is responsible for exfiltrating the file to the FTP server specified in the configuration file.
This thread waits for the mutex to be released and then FTPs all .rar files contained in the global list to the FTP
server. If the config is missing the FTP username or password, it will use the IP in the configuration file to
perform a POST request to /update.php on the server. The archive is deleted after it is exfiltrated from the
system.

This thread also maintains a log of the activities on the system based on the file path given in the configuration
file. However, in all the observed configs there was no path listed which caused the log file to be written to
%WINDIR%\0.log (or just 0 depending on the version). This file contains a log of the exfiltration attempts and is
exfiltrated with the CHD:

<time_date_stamp> <exfil_file_size> <rar_exfil_name>

The Cleanup

It is rare for malware authors to clean up artifacts on an infected system. On one of the systems the forensic
analyst was able to discover a file that did exactly this and more. The author went above and beyond writing a
cleaner that return the system to a "clean" state. This cleaner was highly targeted, and contained hardcoded
paths to the malware, exfiltration files, and the legitimate files on the system. The recent compile time of the
cleaner also points to the cleaner being written for the current malware campaign.

Cvc.exe C79C6EB598E496B27263B59858FC394AC6262302D63C7FD6CD5148852EA0E744 2015-
06-30
03:57:24

Cvc looks for the TeamViewer process running on the system and injects code into it if it finds it, exiting if it
doesn't exist. TeamViewer is a free third party remote desktop software. The use of weak or default passwords
on remote admin tools is a common initial vector of compromise on PoS systems and was likely the ingress
method for the most recent forensic case involving Cherry Picker. The code contains a custom "shredder"
function that takes a file path overwrites the file multiple times with 00's, FF's, and cryptographic junk before
moving the file to a random name in the same folder. The random name is then deleted. A hardcoded list of
malware and exfiltration file locations are shredded. The injected code also shreds the original cvc.exe. The
AppInit_DLLs registry key is checked for the pserver32.dll value and deleted if it exists. The PoS software that
was being targeted is terminated and then re-launched to remove the malware from memory. Once the
malware has been removed from the system, the system handles held by the TeamViewer process are
enumerated and the handle to the current log file is obtained. The current position is set to the beginning of the
file, causing TeamViewer to overwrite its own logs. The injected code then deletes all old log files from the
TeamViewer directory. Finally, the connection log is accessed and any reference to the malware author's
connection is overwritten with 00's. The injected thread terminates and concludes restoring the system to a
near pre-infection state. It does not reset the LoadAppInit_DLLs Registry key to 0, which doesn't necessarily
mean that the system was infected by Cherry Picker but isn't typically set to 1 on a system with default
settings.

Detection

Trustwave's Endpoint Protection contains custom signatures that protect our customers from the Cherry Picker
threat. In addition to this we have released Yara rules capable of finding the installation, main malware, and
cleaner for Cherry Picker malware. The yara signatures can be found at Trustwaves github page.

Conclusion

https://github.com/SpiderLabs/malware-analysis/blob/master/Yara/CherryPicker/cherryPicker.yar


7/7

Any malware author's main goal is to obtain target data while not being discovered or blocked by the owners of
the target network. Cherry Picker was built to evade security controls through its use of configuration files,
encryption, obfuscation, command line arguments and highly targeted victims. The introduction of a new way
to parse memory and find CHD, a sophisticated file infector, and a targeted cleaner program have allowed this
malware family to remain under the radar of many security and AV companies. Hopefully this post will raise
awareness and drive further discussion of this malware family so that customers will be protected from this
threat.


