
1/11

Design issues of modern EDRs:bypassing ETW-based solutions
binarly.io/posts/Design_issues_of_modern_EDRs_bypassing_ETW-based_solutions/index.html

As experts in firmware security, the Binarly team is frequently asked why endpoint solutions can’t detect threats originating below the

operating system such as firmware implant payloads. Unfortunately, the problem requires a more complex approach and the modern

architecture of Endpoint Detection & Response (EDR) solutions are weak against generic attack patterns.

At Black Hat Europe 2021, Binarly researchers presented several attack vectors that weren't aimed at attacking a single solution, but

instead exposed industry-wide problems. The technical details of two new UEFI bootloader-based pieces of malware (FinSpy and

ESPecter, which behave similarly to classical bootkits, have been published recently. However, instead of infecting legacy bootstrap

code (MBR/VBR), they attack the UEFI-based bootloader to persist below the operating system. These types of threats can influence

the kernel-space before all the mitigations apply. This allows an attacker to install kernel-mode implants or rootkit code very early in

the boot process.

Past publicly available ETW bypasses rely on hooking/unhooking techniques to alter the executable files loading with runtime

changes such as reflective code injection (You’re off the hook – Zero Nights 2016, Matrosov & Tang)

With that in mind, the Binarly research chose to focus on uncovering ETW design problems and uncover attacks that affect all the

solutions relying on ETW telemetry. Firmware implants to deliver operating system payloads implementing these attacks will NOT be

detected by modern endpoint solutions.

Design issues are the worst

Event Tracing for Windows (ETW) is a built-in feature, originally designed to perform software diagnostics, and nowadays ETW is

widely used by Endpoint Detection & Response (EDR) solutions.

Attacks on ETW can blind a whole class of security solutions that rely on telemetry from ETW. Researching ways to disable ETW is of

critical importance given that these attacks can result in disabling the whole class of EDR solutions that rely on ETW for visibility into

the host events. Even more important is researching and developing ways to detect if the ETW has been tampered with and notify the

security solutions in place.

This topic is very important for all the experts dealing with Windows security, malware detection and incident response.

Event Tracing for Windows (ETW) is a built-in Windows logging mechanism designed to observe and analyze application behavior.

ETW was introduced quite a while ago (Windows XP) as a framework implemented in the kernel to troubleshoot OS components

behavior and performance issues; since then, it has been expanded and improved significantly - in Windows 11, ETW can produce

more than 50,000 event types from about 1,000 providers.

https://www.binarly.io/posts/Design_issues_of_modern_EDRs_bypassing_ETW-based_solutions/index.html
https://www.blackhat.com/eu-21/briefings/schedule/index.html#veni-no-vidi-no-vici-attacks-on-etw-blind-edr-sensors-24842
https://securelist.com/finspy-unseen-findings/104322/
https://www.welivesecurity.com/2021/10/05/uefi-threats-moving-esp-introducing-especter-bootkit/
https://2016.zeronights.ru/wp-content/uploads/2016/12/You%E2%80%99re-Off-the-Hook.pdf

2/11

Using ETW to collect host telemetry has the following advantages:

Available system-wide, in all recent Windows OSs without having to be installed, loading any kernel drivers or OS rebooting.

Supports a standardized framework to produce and consume logging events.

High-speed logging that lets applications consume events in real-time or from a disk file.

ETW is used to collect events in large-scale business solutions such as Docker, Amazon CloudWatch. MS SQL Server has been using

ETW for more than 10 years.

One of the first examples of using ETW-based tools to analyze and reveal malware behavior was presented by Mark Russinovich in his

talk “Malware Hunting with the Sysinternals Tools” about 10 years ago. Since then, developers of modern EDRs have leveraged ETW

to monitor security related events and successfully detect and respond to cutting-edge malware.

As an example, Process Monitor from the SysInternals suite was leveraging NT Kernel Logger ETW session for network tracing. Its

latest version is still relying on ETW for such visibility but a dedicated ETW session, PROCMON TRACE, was introduced. During the

Black Hat Europe 2021 talk, the Binarly team demonstrated an ETW attack on Processor Monitor that resulted in blinding the

SysInternals tool from any network activity.

There are plenty of practical research projects demonstrating the ability of ETW to capture malicious activity or perform threat

research and reverse engineering:

DARPA has sponsored several ETW-based monitoring systems for malware detection

Project Windows Low-Level System Monitoring Data Collection obtains data from many ETW providers,

including NT Kernel Logger to reveal and reconstruct various attacks such as browser exploit attacks and malicious file

download.

Project MARPLE focuses on hardening enterprise security by automating the detection of APT threats. One of its

modules, Holmes, collects host telemetry via ETW to produce detection signals for APT campaigns.

Project APTShield uses ETW for logging system call routines. This scheme helps to detect RATs by analyzing malicious

behavior, such as key logging, screen grabbing, remote shell, audio recording and unauthorized registry manipulation.

MITRE-built ETW-based Security Sensor to detect process injection, capture process creation and termination, file creation and

deletion events for certain filenames and paths.

ETW is a hot topic in many academic papers focused mostly on detecting malicious behavior:

Malware Characterization Using behavioral Components from George Mason University

Detecting File-less Malicious Behavior of.NET C2 agents using ETW from University of Amsterdam

Tactical Provenance Analysis for Endpoint Detection and Response Systems form University of Illinois

Etc.

3/11

According to the MITRE CVE database, in 2021, there is an exponential rise in the number of ETW related vulnerabilities that

received a CVE number. So it is safe to assume that ETW has caught the attention of Bug hunters:

As discussed, ETW is helpful for gathering telemetry to defend against attacks, but it has drawbacks.

One important drawback is that ETW has an opaque structure, including undocumented providers and providers that issue

undocumented events - ETW event templates are stored in the PE resource section under WEVT_TEMPLATE resource id.

ETW can be leveraged by living-off-the-land malware:

ETW can provide sniffer functionality for file & registry operations, process, thread & network activity

ETW can provide keylogger functionality

ETW can be used to flood the HDD in DDOS attacks, since events can be cached to disk in log files

malware can use ETW to detect sandbox detonations

some ETW providers are available only for certain Protected Process Light (PPL) processes; but malware can disable PPL on

targeted processes via a kernel mode driver without causing BSOD – and next disable the “hidden” ETW providers

Unfortunately for the defenders, ETW can be BYPASSED!

Many ways to disable ETW logging are publicly available from passing a TRUE boolean parameter into a nt!EtwpStopTrace

function to finding an ETW specific structure and dynamically modifying it or patching ntdll!ETWEventWrite or

advapi32!EventWrite to return immediately thus stopping the user-mode loggers.

Over the past several years, there have been many examples of malware families that implemented mitigations to evade ETW-based

logging.

In March 2018, Kaspersky released a report on Slingshot, a complex and unknown cyber-espionage platform targeting African

and Middle East countries.

Slingshot, the first-stage loader, renames the ETW-logs by appending .tmp extension to avoid leaving traces of its activity

in system logs.

Minisling, a module in the platform, uses Microsoft-Windows-Kernel-General ETW provider to obtain the last reboot

time and the Microsoft-Windows-Kernel-Power ETW provider to obtain the last unsuccessful attempt to turn the machine

off.

In 2019, LockerGoga Ransomware implemented functionality to disable ETW by turning off tracing from Microsoft-Windows-

WMI-Activity provider via wevtutil tool.

https://malpedia.caad.fkie.fraunhofer.de/actor/slingshot
https://malpedia.caad.fkie.fraunhofer.de/actor/slingshot
https://attack.mitre.org/software/S0372/

4/11

In August 2021, TrendMicro researchers published the details of a new campaign from APT41 targeting South-China Seas

countries where it was mentioned the use of 2 new shellcode loaders that can run payloads, uninstall themselves, disable ETW

to evade detection, and also try out credentials.

MITRE has updated the Defense Evasion category to take into account these attacks by adding a new technique

called “Indicator Blocking” as a separate sub-technique to Impair Defenses technique.

The ETW Threat Modeling is presented below:

Threat Modeling ETW

There are 5 types of attacks, designated by a different color, targeting each component of the ETW architecture:

Red shows attacks on ETW from inside an Evil Process

Light blue shows attacks on ETW by modifying environment variables, registry and files

Orange shows attacks on user-mode ETW Providers

Dark blue shows attacks on kernel-mode ETW Providers

Purple shows attacks on ETW Sessions

The Binarly team recapped the most important bypasses publicly available during their Black Hat Europe 2021 talk. The most up-to-

date summary of the ETW attacks by category is presented below:

Type of Attack Number of different techniques

Attacks from inside AN EVIL process 6

Attacks on ETW environment variables, registry, and files 3

Attacks on user-mode ETW providers 11

Attacks on kernel-mode ETW providers 7

Attacks on ETW sessions 9

Total Attacks 36

New attacks discovered by Binarly REsearch

https://attack.mitre.org/groups/G0096/

5/11

Before introducing a new attack on Process Monitor presented by the Binarly team, let’s talk a bit more about ETW Sessions. An ETW

session is a global object identified by a unique name that allows multiple ETW consumers to subscribe and receive events from

different ETW providers. To make matters more obfuscated, there is neither API nor documentation on how to identify the session a

consumer subscribes to receive events from.

The EtwCheck (it will be released soon, stay tuned) is a powerful tool that can extract various kernel data including the in-memory

WMI_LOGGER_CONTEXT structures for the corresponding sessions. These structures contain the sessions Security Descriptors,

Flags and PIDs that can help identify the applications that subscribe to these sessions.

The default number of simultaneously running sessions is 64. The NT kernel supports a maximum of 8 System Logger Sessions with

hardcoded unique names. Some examples of System Session include NT Kernel Logger, Global Logger, and Circular Kernel Context

Logger.

NT Kernel Logger session receives telemetry from different providers implemented in the ntoskrnl.exe and OS core drivers. One

important key point, which will be leveraged in the attack on Process Monitor, is that Windows supports only one active NT Kernel

Logger session at any time but any application with admin privileges can start/stop this session.

Process Monitor is free, and very popular for malware analysis which uses absolutely the same technology as many EDRs. To receive

network events Process Monitor launches an ETW session as follows:

Process Monitor version up to 3.60 uses NT Kernel Logger session.

Process Monitor version 3.85 uses a session called PROCMON TRACE.

Process Monitor uses ETW to sniff network events

From an attacker application, the running session that Processor Monitor relies on is stopped and a fake one is started. As a result,

Process Monitor stops receiving network events and relaunching it does not fix the problem.

6/11

ETW Hijacker blinds Process Monitor by stopping ETW sessions

To demonstrate this attack, Binarly team has developed ETW Hijacker (it will be released soon, stay tuned) which functionality is

based on the following control flow:

https://youtu.be/7jmjqnrwX2M

7/11

Block diagram of ETW Hijacker

In the second attack introduced during the talk, the targeted application is Windows Defender and its secure ETW sessions:

Logger
ID Logger Name Instance GUID Registry Path

4 DefenderApiLogger {6B4012D0-
22B6-464D-
A553-
20E9618403A2}

HKLM\SYSTEM\CurrentControlSet\Control\WMI\Autologger\DefenderApiLogger

5 DefenderAuditLogger {6B4012D0-
22B6-464D-
A553-
20E9618403A1}

HKLM\SYSTEM\CurrentControlSet\Control\WMI\Autologger\DefenderAuditLogger

Each ETW session has an associated Security Descriptor, which is located in the registry in the

HKLM\SYSTEM\CurrentControlSet\Control\WMI\Security key. The binary content of the security descriptor associated with

DefenderApiLogger is written in the 6B4012D0-22B6-464D-A553-20E9618403A2 value and the binary content of the security

8/11

descriptor associated with DefenderAuditLogger is written in the 6B4012D0-22B6-464D-A553-20E9618403A1 value under

HKLM\SYSTEM\CurrentControlSet\Control\WMI\Security key.

As it can be seen in the next figure, the Security Descriptor stored in the registry matched the corresponding Security Descriptor in

kernel memory (WMI_LOGGER_CONTEXT.SecurityDescriptor.Object).

Security descriptor for DefenderApiLogger in Registry and in the kernel memory

One simple way to blind Windows Defender is to zero out registry values corresponding to its ETW sessions:

reg add "HKLM\System\CurrentControlSet\Control\WMI\Autologger\DefenderApiLogger" /v "Start" /t REG_DWORD
/d "0" /f

Windows provides QueryAllTracesW API to retrieve the properties and statistics for all ETW sessions for which the caller has

permissions to query. After calling this function the execution control goes to the kernel and finally to EtwpQueryTrace function (its

corresponding pseudocode shown below). As it can be seen in the pseudocode, the EtwpQueryTrace function includes several security

checks to prevent returning information about a secure session to unprivileged applications. This is the reason why event apps with

admin privileges can’t query the Windows Defender ETW sessions. First, the access rights of the caller are checked by comparing the

session security descriptor with the process token. Second, it checks whether the queried session has its SecurityTrace flag set and

implement one more check based on the PPL mechanism in the EtwCheckSecurityLoggerAccess function.

9/11

EtwpQueryTrace function checks two fields: Security Descriptor and Flags. SecurityTrace

By default, users cannot query information about Defender ETW sessions since they are running with high privilege and have

SecurityTrace flag enabled. Both session parameters, the security descriptor and SecurityTrace flag, are stored in the

WMI_LOGGER_CONTEXT structure.

Malware can load a driver that patches the aforementioned values in the targeted WMI_LOGGER_CONTEXT structure to make the

execution flow bypass the security checks and execute EtwpGetLoggerInfoFromContext function.

Malware can patch the WMI_LOGGER_CONTEXT structure to allow querying Defender ETW sessions

Now, moving to stopping secure ETW sessions, Windows provides StopTraceW function to stop the specified ETW session. After

calling this function the execution control goes to the kernel and finally to EtwpStopTrace function (its corresponding pseudocode

shown below). As it can be seen in the pseudocode, the EtwpStopTrace function includes several security checks to prevent stopping

the targeted secure session by unprivileged applications. This is the reason why even apps with admin privileges can’t stop the

Windows Defender ETW sessions. First, the session “stoppable” characteristics is checked by querying the LoggerMode field in the

WMI_LOGGER_CONTEXT structure. Second, the access rights of the caller are checked by comparing the session security descriptor

with the process token.

EtwpStopTrace function checks LoggerMode and Security Descriptor

By default, users cannot stop the Defender ETW sessions since they are running with high privilege and have been marked as non-

stoppable. Both session parameters, the security descriptor and LoggerMode field, are stored in the WMI_LOGGER_CONTEXT

structure.

Malware can load a driver that patches the aforementioned values in the targeted WMI_LOGGER_CONTEXT structure to make the

execution flow bypass the security checks and execute EtwpStopLoggerInstance function.

10/11

Malware can patch the WMI_LOGGER_CONTEXT structure to allow stopping Defender ETW sessions

To summarize the attack to query information about the target secure ETW session and then stop it, a malware driver has to patch

three fields in the corresponding WMI_LOGGER_CONTEXT structure in memory.

Summary of the Attack

The demo on querying and stopping the Windows Defender ETW sessions presented during the talk can be found on Binarly YouTube

channel.

Windows PatchGuard is a software protection utility designed to forbid the kernel from being patched in order to prevent rootkit

infections. However, we can see from the demo that PatchGuard does not protect kernel ETW structures from illegal write access.

To mitigate this risk, MemoryRanger can be used. Memory Ranger is a hypervisor-based utility designed to prevent attacks on kernel

memory. After loading, MemoryRanger allocates a default enclave for the OS and previously loaded drivers. MemoryRanger traps the

loading of the ETW Blinder driver and moves it to the isolated kernel enclave in run-time with different memory access restrictions.

Using Extended Page Table (EPT), MemoryRanger can trap access to the sensitive data and return fake data to the attacker.

https://youtu.be/SxrqaIlY488
https://github.com/IgorKorkin/MemoryRanger

11/11

MemoryRanger can prevent patching ETW session structures

The demo on how MemoryRanger can prevent patching the WMI_LOGGER_CONTEXT structure presented at BlackHat Europe

2021 can be found on Binarly YouTube channel.

In conclusion, ETW was originally designed to perform software diagnostics, but nowadays it is widely used by various EDRs and

cybersecurity solutions. It is crucial to understand the attacks on ETW because these attacks can disable the whole class of security

solutions. During the talk we presented two new attacks on Process Monitor and Windows Defender and introduced two new tools

that can help in identifying (EtwCheck) and preventing attacks on ETW (MemoryRanger).

Going on step further, let’s assume that an attack originates in the firmware, sets persistence, executes the next-stage payload to move

up in the kernel where it can implement one of the attacks shown in this presentation. This will be devastating, due to its stealth-ness

and resilience to OS reinstallation or HDD replacing. That's why, today, security solutions MUST receive signals from below and

above the OS to be able to respond effectively to such threats.

https://youtu.be/62CmVadzZPQ

