
1/5

Advanced Polymorphism Primer
vxug.fakedoma.in/archive/VxHeaven/lib/vda01.html

Maximize

VX Heaven

 

Dark Angel

 
40hex [11]

 
June 1993

 

With the recent proliferation of virus encryption "engines," I was inspired to write my own.

In a few short weeks, I was able to construct one such routine which can hold its own. A

polymorphic encryption routine is nothing more than a complex code generator. Writing

such a routine, while not incredibly difficult, requires careful planning and perhaps more

than a few false starts.

The utility of true polymorphism is, by now, an accepted fact. Scanning for the majority of

viruses is a trivial task, involving merely the identification of a specific pattern of bytes in

executable files. This approach is quick and may be used to detect nearly all known viruses.

However, polymorphism throws a monkey wrench into the works. polymorphic viruses

encode each copy of the virus with a different decryption routine. Since (theoretically) no

bytes remain constant in each generated decryption routine, virus detectors cannot rely on a

simple pattern match to locate these viruses. Instead, they are forced to use an algorithmic

appproach susceptible to "false positives," misleading reports of the existence of the virus

where it is not truly present. Creating a reliable algorithm to detect the polymorphic routine

takes far more effort than isolating a usable scan string. Additionally, if a virus detector fails

to find even one instance of the virus, then that single instance will remain undetected and

spawn many more generations of the virus. Survival, of course, is the ultimate goal of the

virus.

Before attempting to write a polymorphic routine, it is necessary to obtain a manual detailing

the 80x86 instruction set. Without bit-level manipulation of the opcodes, any polymorphic

routine will be of limited scope. The nice rigid structure of the 80x86 instruction set will be

readily apparent after a simple perusal of the opcodes. Exploitation of this structured

instruction set allows for the compact code generation routines which lie at the heart of every

significant polymorphic routine.

https://vxug.fakedoma.in/archive/VxHeaven/lib/vda01.html
http://vxheaven.0l.wtf/lib/index.php?tbs=1
https://vxug.fakedoma.in/archive/VxHeaven/index.html
https://vxug.fakedoma.in/archive/VxHeaven/lib/index.html@lang=en&author=Dark%20Angel.html
https://vxug.fakedoma.in/archive/VxHeaven/vx.php@fid=22.html#f22


2/5

After examining the structure of the opcodes, the basic organisation of the polymorphic

routine should be laid out. Here, an understanding of the basics behind such routines is

required. The traditional approach treats the decryption routine as a simple executable

string, such as "BB1301B900022E8137123483C302E2F6." A true (advanced) polymorphic

routine, by contrast, views the decryption routine as a conceptual algorithm, such as, "Set up

a 'pointer' register, that is, the register whose contents hold a pointer to the memory to be

decrypted. Set up a counter register. Use the pointer register to decrypt one byte. Update the

pointer register. Decrement the count register, looping if it is not zero." Two routines which

fit this algorithm follow:

Sample Encryption 1

                mov bx,offset startencrypt      ; here, bx is the 'pointer' register

                mov cx,viruslength / 2          ; and cx holds the # of iterations

decrypt_loop:

                xor word ptr [bx],12h           ; decrypt one word at a time

                inc bx                          ; update the pointer register to

                inc bx                          ; point to the next word

                loop decrypt_loop               ; and continue the decryption

startencrypt:

 

Sample Encryption 2

start:

                mov bx,viruslength              ; now bx holds the decryption length

                mov bp,offset start             ; bp is the 'pointer' register

decrypt_loop:

                add byte ptr [bp+0Ch],33h       ; bp+0Ch -> memory location to be

                                                ; decrypted at each iteration

                inc bp                          ; update the pointer register

                dec bx                          ; and the count register

                jnz decrypt_loop                ; loop if still more to decrypt

 

The number of possibilities is essentially infinite. Naturally, treating the decryption as an

algorithm rather than as an executable string greatly increases the flexibility in creating the

actual routine. Various portions of the decryption algorithm may be tinkered with, allowing

for further variations. Using the example above, one possible variation is to swap the order of

the setup of the registers, i.e.

                mov cx,viruslength

                mov bx,offset startencrypt

 



3/5

in lieu of

                mov bx,offset startencrypt

                mov cx,viruslength

 

It is up to the individual to decide upon the specific variations which should be included in

the polymorphic routine. Depending upon the nature of the variations and the structure of

the polymorphic routine, each increase in power may be accompanied with only a minimal

sacrifice in code length. The goal is for the routine to be capable of generating the greatest

number of variations in the least amount of code. It is therefore desirable to write the

polymorphic routine in a manner such that additional variations may be easily

accommodated. Modularity is helpful in this respect, as the modest overhead is rapidly offset

by substantial space savings.

The first step most polymorphic routines undergo is the determination of the precise

variation which is to be encoded. For example, a polymorphic routine may decide that the

decryption routine is to use word-length xor encryption with bx as the pointer register, dx as

a container for the encryption value, and cx as the counter register. Once this information is

known, the routine should be able to calculate the initial value of each variable. For example,

if cx is the counter register for a byte-length encryption, then it should hold the virus length.

To increase variability, the length of the encryption can be increased by a small, random

amount. Note that some variables, in particular the pointer register, may not be known

before encoding the rest of the routine. This detail is discussed below.

Of course, selecting the variables and registers will not in and of itself yield a valid decryption

routine; the polymorphic routine must also encode the actual instructions to perform the job!

The cheesiest polymorphic routines encode a single "mov" instruction for the assignment of a

value to a register. The more complex routines encode a series of instructions which are

functionally equivalent to the simple three byte "mov" statement yet far different in form. For

example,

                mov ax, 808h

 

could be replaced with

                mov ax, 303h                    ; ax = 303h

                mov bx, 101h                    ; bx = 101h

                add ax, bx                      ; ax = 404h

                shl ax, 1                       ; ax = 808h

 



4/5

Recall that the registers should be encoded in a random order. The counter variable, for

example, should not always be the first to be encoded. Predictability, the bane of

polymorphic routines, must be avoided at all costs.

After the registers are encoded, the actual decryption loop should then be encoded. The loop

can perform a number of actions, the most significant of which should be to manipulate the

memory location, i.e. the actual decryption instruction, and to update the pointer register, if

necessary. Finally, the loop instruction itself should be encoded. This can take many forms,

including "loop," "loopnz," "jnz," etc. Possible variations include altering the decryption value

register and the counter register during each iteration.

This is the general pattern of encoding. By placing garbling, or "do-nothing," instructions

between the essential pieces of code, further variability may be ensured. These instructions

may take many forms. If the encoding routines are well-designed, the garbler can take

advantage of the pre-existing code to generate null instructions, such as assignments to

unused registers.

Once the decryption routine has been written, it is necessary to encrypt the virus code. The

traditional approach gives the polymorphic routine the job of encrypting the code. The

polymorphic routine should therefore "remember" how the precise variation used by the

decryptor and adjust the encryption routine in a complementary fashion. An alternate

approach is for the polymorphic routine to simultaneously encode both the encryption and

decryption routines. Although it adds overhead to the code, it is an extremely flexible

approach that easily accommodates variations which may be later introduced into the

polymorphic routine.

Variable-length decryptors come at a significant trade-off; the exact start of the decryption

cannot be known before encoding the decryptor. There are two approaches to working

around this limitation. The first is to encode the pointer register in a single instruction, i.e.

mov bx,185h and to patch the initial value once it is known. This is simplistic, though

undesirable, as it decreases the variability of the routine. An alternate approach is to encode

the encryption instruction in the form xor word ptr [bx+185h], cx (as in Sample encryption 2,

above) instead of xor word ptr [bx], cx (as in Sample encryption 1). This increases the

flexibility of the routine, as the initial value of the pointer register need not be any fixed

value; correct decryption may be assured by adjusting the offset in the decryption

instruction. It is then possible to encode the pointer register with multiple instructions,

increasing flexibility. However, using either method alone increases the predictability of the

generated code. A better approach would be to incorporate both methods into a single

polymorphic routine and randomly selecting one during each run.

As an example of a polymorphic routine, I present DAME, Dark Angel's Multiple Encryptor

and a simple virus which utilises it. They appear in the following article. DAME uses a variety

of powerful techniques to achieve full polymorphism. Additionally, it is easy to enhance; both



5/5

the encoding routines and the garblers can be extended algorithmically with minimal effort.

In the next issue, I will thoroughly comment and explain the various parts of DAME.

 

 

 


