
1/4

Tutorials - Generic Polymorphism
ivanlef0u.fr/repo/madchat/vxdevl/vdat/tugenpol.htm

Generic Polymorphism

by Rajaat

Introduction:

The idea of having an opcode emulator in a virus scanner to decrypt a very polymorphic virus

isn't a novelty anymore. The more decent scanners can handle viruses that have a complex

decryptor, using a generic decryptor to take the protective shell from the virus away, making

the structures of the virus very visible to the scanner.

So far, every polymorphic engine that is designed is able to make a certain type of decryptor,

with variations in it's general behaviour, but not a generic encryptor.

Since we, virus writers, also must adapt to newer programming technologies, a further step

in virus advancement is generic programming. This generic programming can be used for

any sort of virus related approach.

Background:

Every polymorphic engine is based on certain rules that will be used in a random order and

trash instructions and instructions that compose another opcode. But what about a

polymorphic engine you can feed a piece of CODE to, and the engine generates mutations of

that code? This would truely be a real polymorphic engine and will polymorph everything,

regardless of what it does. Take this for an example:

 MOV AX,3D02
 INT 21

If you feed this to the generic polymorpher, you might get the following result:

 SUB AX,AX
 ADD AX,3000
 CMP AX,78AF
 JE NEVER_JUMPS
 XOR AX,0D02
 NEVER_JUMPS:
 INT 21

Or if you want to generate a decryptor, you can feed this to the polymorpher:

https://ivanlef0u.fr/repo/madchat/vxdevl/vdat/tugenpol.htm

2/4

 MOV SI,OFFSET ENCRYPTED_VIRUS
 MOV AL,32
 MOV CX,VIRUS_LENGTH
 DECRYPT_VIRUS:
 XOR BYTE PTR [SI],AL
 ADD AL,4
 INC SI
 LOOP DECRYPT_VIRUS

You might get this as a result:

 MOV SI,OFFSET ENCRYPTED_VIRUS+145
 ADD SI,-145
 MOV AL,33
 DEC AX
 MOV CX,VIRUS_LENGTH XOR 1234
 XOR CX,1234
 DECRYPT_VIRUS:
 XCHG SI,DI
 XOR BYTE PTR [DI],AL
 XCHG SI,DI
 INC AL
 INC AL
 INC AL
 ADD AL,1
 SUB SI,-1
 DEC CX
 JNZ DECRYPT_VIRUS

As you have noticed, the polymorpher only puts random instructions in the place where it

could compose more compact instructions, it doesn't swap opcodes. This should be generated

by a separate module, because a the polymorpher doesn't know what it is allowed to swap

and what's not allowed to swap. To generate a decryptor, you must call two engines, like in

the diagram shown:

 .----------------. .-----------.
 (1) >>-|OPCODE SCRAMBLER|---->>----|POLYMORPHER|->> (3)
 '----------------' (2) '-----------'

 (1) Input parameters to generate a decryptor
 (2) Generic Decryptor
 (3) Polymorphic Generic Decryptor

You can make both the opcode scrambler and the polymorpher as complex as you want. In

it's most simple implementation, the polymorpher has a little drawback: since it polymorphs

one opcode at a time, the random opcodes and not be mixed with random opcodes from the

next operand. The advantage is that you don't need to track the registers, but it's

polymorphic structure is still somewhat predictable. There are a few problems considering

the polymorpher:

Recalculate branch jump opcodes

3/4

How to handle registers set to pointer

How to fully mutate a virus? You must keep the original metavirus code, otherwise it

would polymorph the polymorphed virus.

How to set aside data from code while morphing?

An approach to resolve the jump and register handling opcodes is making some sort of

relocation table, as used in EXE files. If you want to polymorph a piece of program you feed

the polymorpher the range of jumps it should adjust. You can put this on the stack while

calling the engine, or setting some pointer to a predefined table, whichever approach you like

most. Make sure you can relocate both 8 and 16 bits addresses, both direct or indirect.

You can also generate a range table which must not be morphed and to which references

should be updates (pointer registers).

A relocation/exclusion/resolve table (RER table) can look like this:

 enum RER_types {
 RERT_nil, ; 0 - end of RER chain
 RERT_8rel, ; 1 - 8 bits relative address (conditional jumps)
 RERT_16rel, ; 2 - 16 bits relative address (call)
 RERT_16dir, ; 3 - 16 bits direct address (pointers & jumps)
 }
 struct RER_table {
 RER_type : unsigned char;
 RER_address : unsigned int;
 }

After using this table on morphing the code you want, don't forget to update the table with

the new addresses if you want to morph again the current result. You can, if programmed in a

good style, call the morpher multiple times, and each time it will morph the routine specified.

A bit harder is including the possibility to shrink a routine that was generated by a previous

morph. To expand and add instructions that do the same thing is easier than shrink them

into a compact instruction, as you need to know how a few instructions can be optimized into

less instructions or a shorter variant. Some simple algorithms are possible, like changing an

ADD <reg>,1 into an INC <reg> or even more complicated things like this:

 Unoptimized Optimized
 CMC JC ERROR
 JNC ERROR
 CMC

 XOR AX,AX MOV AX,3D02
 ADD AX,3D02

Maybe it's best to seperate the shrinker module too, so you first let the shrinker optimize the

virus to what it thinks that is the shortest way, and next calling the morphing engine to

enlarge it again. Both can use the same instruction table and RER table. You can also add an

4/4

overlapping module that randomly calls both the shrinker and morpher, thus optimizing

some parts of the virus while expanding other parts.

Thus, the modules are like this hierarchy:

 .---------.
 |Scrambler|(1)
 '----v----'
 .-------.
 |Mutator|(2)
 '---v---'
 .-------.(3)
 .-----|Morpher|----.
 .--------.'-------'.--------.
 (4)|Shrinker| |Expander|(5)
 '--------' '---v----'
 .--------.
 |Garbage |(6)
 '---v----'
 .--------.
 |Trasher |(7)
 '---v----'
 .----------.
 |Randomizer|(8)
 '----------'

 (1) Will put instructions in a random order
 (2) Will choose other registers for the actions that must be done
 (3) Will call randomly the shrinker and expander to mutate the code
 (4) Shrinks code by optimizing instructions that it knows
 (5) Expands code by creating multiple random opcodes with the same
 functionality
 (6) Adds random do-nothing instructions
 (7) Adds plain garbage (random numbers)
 (8) Random number generator, must to able to do both slow-random and
 regular random (for slow and normal poly/mutating)

Rajaat 29A, November '98

