
1/15

Methods Behind A Polymorph Engine (Black Baron)
ivanlef0u.fr/repo/madchat/vxdevl/vdat/tumisc10.htm

A GENERAL DESCRIPTION OF

THE METHODS BEHIND A POLYMORPH ENGINE

by

The Black Baron

https://ivanlef0u.fr/repo/madchat/vxdevl/vdat/tumisc10.htm

2/15

This .DOC attempts to provide an insight into the workings of a Polymorph
Engine. It assumes you are familiar with 8086 assembler and the logic
functions XOR, AND & OR. To this end, no explanation of logic or assembler
will be included in this text! Also note, no SEGMENT stuff will be included
in any of the assembler listings, it is assumed that you know which segments
are in play. The methods described in this .DOC are the ones used in my SMEG
(Simulated Metamorphic Encryption Generator) Polymorph Engine and are by no
means the only way to do it!

A small glossary of terms used in this document:

 ENCRYPT = Transform from it's original form to an altered form.
 DECRYPT = Transform from it's altered form to it's original form.
 KEY = The register or value used to encrypt/decrypt with.
 SLIDING KEY = A KEY value that is INCREASED or DECREASED on each loop.
 COUNT = The number of bytes in the encrypted code or data.
 INDEX = A pointer to the encrypted code or data.
 SIGNATURE = A unique group of bytes that can be used to check against
 a programs content in the hope of detecting a particular
 program.
 HEURISTIC = A set of well defined rules to apply to a problem in the
 hope of achieving a known result.

Question: What is a Polymorph?

Answer: Well, the Longman English Dictionary defines it as:

 "POLYMORPHOUS also POLYMORPHIC adj fml or tech.
 EXISTING IN VARIOUS DIFFERENT FORMS."

In other words, something that has the ability to change it's shape. Other
ways to describe such a thing might be; Mutable, Metamorphic, Etc...

Question: What is a Polymorph Engine?

Answer: A program with the abilities to encrypt (or jumble up) another
 program or data and provide a unique decryptor for it, it must
 do this in such a way that no two encryptions of the same program
 or data will look alike.

Example: Take the following ultra-simple decryptor:

 MOV SI,jumbled_data ;Point to the jumbled data
 MOV CX,10 ;Ten bytes to decrypt
main_loop: XOR BYTE PTR [SI],55 ;XOR (un_scramble!) a byte
 INC SI ;Next byte
 LOOP main_loop ;Loop for the 9 remaining bytes

This small program will XOR the ten bytes at the location pointed to by SI
with the value 55. Providing the ten bytes were XORed with 55 prior to
running this decryptor the ten bytes will be restored to their original
state. If you are unsure as to why this is, brush up on your XOR logic!!

3/15

Ok, so you might say that if you change the KEY value on each generation it
will become Polymorphic? Well, yes and no! If you did that, the encrypted
portion would be Polymorphic, but the decryptor would still remain mostly the
same, the only change begin the KEY value! So, a signature scanner that
allows WILDCARDS (and most do!) would still be able to find your decryptor!

One way you could fool some signature scanners is to swap around some of the
instructions. So, with this in mind, the above decryptor might look like:

 MOV CX,10
 MOV SI,jumbled_data
main_loop: XOR BYTE PTR [SI],55
 INC SI
 LOOP main_loop

As you can see, still not much of a change, not really enough to fool some of
the better signature scanners.

"GET TO THE POINT! WHAT IS A TRUE POLYMORPH?", I hear you cry!

Well, a "true" Polymorph would be a decryptor that looks completely different
on each generation! Take the following decryptor:

 MOV CX,10
 NOP
 NOP
 MOV SI,jumbled_data
 NOP
main_loop: NOP
 NOP
 XOR BYTE PTR [SI],55
 NOP
 INC SI
 NOP
 NOP
 NOP
 NOP
 LOOP main_loop

This decryptor is the same as the one before it, but it has has a few random
NOP instructions peppered throughout itself. On each generation you would
vary the amount of NOPs after each instruction. This is a Polymorph in it's
simplest form. Still, most of the good signature scanners would have no
problem with such a simple Polymorph. They would simply skip the NOPs, thus
having a clear view of the decryptor, to which they could apply a signature!

No, a "true" Polymorph has to be far far more complex then this! Instead of
peppering NOPs throughout the decryptor it would pepper totally random amounts
of totally random 8086 instructions, including JUMPS and CALLS. It would
also use a different main decryptor (possibly from a selection of pre-coded
ones) and would alter all the registers that the decryptor uses on each
generation, making sure that the JUNK code that it generates doesn't destroy
any of the registers used by the real decryptor! So, with these rules in

4/15

mind, here is our simple decryptor again:

 MOV DX,10 ;Real part of the decryptor!
 MOV SI,1234 ;junk
 AND AX,[SI+1234] ;junk
 CLD ;junk
 MOV DI,jumbled_data ;Real part of the decryptor!
 TEST [SI+1234],BL ;junk
 OR AL,CL ;junk
main_loop: ADD SI,SI ;junk instruction, real loop!
 XOR AX,1234 ;junk
 XOR BYTE PTR [DI],55 ;Real part of the decryptor!
 SUB SI,123 ;junk
 INC DI ;Real part of the decryptor!
 TEST DX,1234 ;junk
 AND AL,[BP+1234] ;junk
 DEC DX ;Real part of the decryptor!
 NOP ;junk
 XOR AX,DX ;junk
 SBB AX,[SI+1234] ;junk
 AND DX,DX ;Real part of the decryptor!
 JNZ main_loop ;Real part of the decryptor!

As you should be able to see, quite a mess!! But, still executable code.
It is essential that any junk code generated by the Polymorph Engine is
executable, as it is going to be peppered throughout the decryptor. Note, in
this example, that some of the junk instructions use registers that we are
using in the decryptor! This is fine, providing the values in these
registers aren't destroyed. Also note, that now we have random registers and
random instructions on each generation it makes signature scanning (even for
the clever signature scanners) impossible! Instead, an HEURISTIC method must
be used, which can lead to false alarms.

So, a Polymorph Engine can be summed up into three major parts:

 1 .. The random number generator.
 2 .. The junk code generator.
 3 .. The decryptor generator.

There are other discrete parts but these three are the ones where most of the
work goes on!

How does it all work? Well, SMEG goes about generating random decryptors in
the following way:

 1 .. Chooses a random selection of registers to use for the decryptor.
 Leaving the remaining registers as "junk" registers for the junk code
 generator.

 2 .. Chooses one of the compressed pre-coded decryptors.

 3 .. Goes into a loop generating the real decryptor, peppered with junk
 code.

5/15

To understand how the selected registers are slotted into the decryptors and
the junk code you must look at the 8086 instructions from a binary level:

 XOR AX,AX = 00110001 11000000
 XOR AX,CX = 00110001 11001000
 XOR AX,DX = 00110001 11010000
 XOR AX,BX = 00110001 11011000

You should be able to see a pattern in the binary code for these four 8086
instructions? Well, all 8086 instructions follow logical patterns, and it is
these patterns that tell the 8086 processor which registers/addressing mode
to use for a particular instruction. The total amount of instruction formats
and the precise logic regarding the patterns is too complex to go into here.
However, all good 8086 tutorials/reference guides will explain in full.

SMEG exploits this pattern logic to generate junk code and decryptors with
random registers, as the patterns directly relate to the registers Etc.

SMEG generates junk code in the following way:
--

Inside SMEG there is a table of the basic binary patterns for all of the 8086
instruction set, but with one important difference, all the register/address
mode bits are zero. This is called the SKELETON INSTRUCTION TABLE. The
table also contains various other bytes used by SMEG to determine the
relevant bit positions to "plug in" the register bit patterns. These
patterns are plugged in via the logic processes OR and AND. Using this
method, SMEG can generate endless amounts of random 8086 instructions without
destroying any of the registers used by the decryptor proper.
SMEG also contains some discrete logic for producing false CALLS to dummy
subroutines and also false conditional JMPS around the junk code.

SMEG generates the decryptor proper in the following way:

Inside SMEG there is a table containing a selection of common 8086
instructions used in decryptors, such as XOR [index],reg Etc. These are,
again, stored in SKELETON FORM with some control bytes used by the decryptor
generator. Also, inside SMEG, there are several pre-coded decryptors stored
in a compressed form. On average, a complete decryptor can be described to
the decryptor generator in as few as 11 bytes and adding to the list of
pre-coded decryptors is both painless and economical with space!

SMEG generates the Polymorphed decryptor in the following way:
--

First it chooses, at random, one of the pre-coded compressed decryptors.
Next it goes into a loop uncompressing each decryptor instruction, plugging
in the required registers, storing it and then generating (for each real
instruction) a random amount of random instructions. This loop repeats until
the complete decryptor has been constructed. The final result is a random
size, random register, random patterned decryptor!

It should also be noted that whenever SMEG generates an INDEXed instruction
it uses either SI, DI or BX at random, also it sometimes uses a random offset.

6/15

For example, say the encrypted code started at address 10h, the following
could be used to index this address:

 MOV SI,10h ;Start address
 MOV AL,[SI] ;Index from initial address

But sometimes SMEG will generate something like the following, again based on
the encrypted code starting at address 10h:

 MOV DI,0BFAAh ;Indirect start address
 MOV AL,[DI+4066h) ;4066h + 0BFAAh = 10010h (and FFFF = 10h)!!

These indexed and initial values are picked at complete random, and the
examples of 0BFAAh and 4066h are valid, but next time they will be completely
different!

The following are two decryptors that were generated with my SMEG Polymorph
Engine. It should be noted that I generated 4000 examples with no two alike!
Unfortunately I ran out of hard drive space! But it is fairly safe to say
that the total number of decryptor combinations would run into the BILLIONS!

All the lines marked with ";junk" in the following listings indicate random
junk instructions that were inserted throughout the actual decryptor, note
that SMEG has the ability to generate junk CALLS to false SUBROUTINES, as
well as general junk conditional jumps! All lines marked with a * indicate
an actual part of the decryptor proper. I chose the two generations shown
because their sizes were similar, 386 and 480 bytes. SMEG produces
decryptors ranging in size from as little as 288 to as much as 1536 bytes.
Even if two decryptors are generated that are the same size the chances of
them being the same are, literally, billions to one!

;Assembler listing for decryptor 1, size 368 bytes.
;--
;Size of the encrypted code was 07DBh (2011 bytes)
;The encrypted code started at address 0270h

;This decryptor was generated to use the following registers:
;
; DX = Count of bytes in the encrypted code
; BX = Index pointing to the encrypted code
; AL = The encryption key
; CL = General work register

0100 JNS 0103 ;junk
0102 CLD ;junk
0103 SAR SI,CL ;junk
0105 CMP BP,0708 ;junk
0109 STC ;junk
010A JG 010E ;junk
010C OR SI,CX ;junk
010E XOR DI,3221 ;junk
0112 ADD BP,0805 ;junk
0116 AND BP,3512 ;junk
011A SHR SI,CL ;junk

7/15

011C MOV SI,1B04 ;junk
0120 SAR DI,CL ;junk
0122 ADC SI,2506 ;junk
0126 ADC DI,1F11 ;junk
012A SBB BP,[0F3E] ;junk
012E CMP BP,3F1E ;junk
0132 DEC SI ;junk
0133 NOT DI ;junk
0135 AND SI,083D ;junk
0139 INC SI ;junk
013A SBB DI,0103 ;junk

013E MOV DX,1791 ;* Set up the COUNT register
 ; 3x Actual number of bytes!

0141 CLD ;junk
0142 JB 0146 ;junk
0144 TEST SI,AX ;junk
0146 SBB DI,SP ;junk
0148 TEST DI,[251B] ;junk
014C TEST CL,[SI] ;junk
014E SHL BP,1 ;junk
0150 MOV BX,017D ;junk
0153 CMC ;junk
0154 MOV DI,1218 ;junk
0158 JO 015C ;junk
015A RCR DI,1 ;junk
015C STC ;junk
015D CMP BP,DI ;junk

015F MOV AX,CS ;* Get CODE SEG in AX

0161 TEST CH,[BX+17] ;junk
0164 SBB BP,3107 ;junk
0168 INC DI ;junk
0169 RCR BP,1 ;junk

016B MOV DS,AX ;* Make DATA SEG = CODE SEG

016D ADD DI,[3B04] ;junk

0171 MOV AL,50 ;* Set up decrypt KEY reg

0173 JNB 0179 ;junk
0175 MOV SI,1439 ;junk
0179 JB 017D ;junk
017B ADC DI,AX ;junk
017D JMP 0185 ;junk
0180 MOV BP,1B36 ;junk
0184 RET ;junk
0185 RCR SI,1 ;junk

0187 MOV BX,842D ;* Set up the INDEX register

018A SUB SI,CX ;junk * Decryptor MAIN LOOP

8/15

018C OR DI,0B0F ;junk
0190 MOV BP,1E3E ;junk
0194 RCL DI,CL ;junk
0196 SUB BP,2E12 ;junk
019A ADD DI,[2E2A] ;junk
019E ROL SI,CL ;junk

01A0 MOV CL,[BX+7E43] ;* Get next encrypted byte
 ; NOTE: original index 842Dh plus 7E43h =
 ; 10270h AND FFFFh = 0270h! Which is the
 ; start of the Encrypted code!

01A4 JZ 01AC ;junk
01A6 TEST BH,[DI+2B3B] ;junk
01AA CMP [BP+SI],DL ;junk
01AC ROL DI,1 ;junk
01AE SBB DI,263A ;junk

01B2 DEC DX ;* Dec the COUNT register (x1)

01B3 CALL 0180 ;junk
01B6 MOV DI,CX ;junk
01B8 ADC BP,282E ;junk

01BC SUB CL,AL ;* Decrypt byte using KEY reg

01BE MOV SI,372A ;junk
01C2 TEST BP,3A10 ;junk
01C6 CALL 0180 ;junk
01C9 ADC SI,1317 ;junk
01CD CLD ;junk

01CE INC AX ;* Increase the KEY reg

01CF XOR SI,203D ;junk
01D3 JMP 01E1 ;junk
01D6 DEC DI ;junk
01D7 CMC ;junk
01D8 SUB BP,[3624] ;junk
01DC XOR SI,0200 ;junk
01E0 RET ;junk
01E1 CMP [SI+13],BH ;junk

01E4 SUB DX,0001 ;* Dec the COUNT register (x2)

01E8 CMP AX,0517 ;junk
01EC SUB BP,2816 ;junk
01F0 AND SI,0807 ;junk
01F4 SUB SI,2E03 ;junk
01F8 ROR BP,1 ;junk
01FA INC DI ;junk
01FB RCR SI,CL ;junk
01FD TEST CH,DH ;junk
01FF SUB BP,1026 ;junk

9/15

0203 MOV [BX+7E43],CL ;* Store the decrypted byte

0207 JNB 020D ;junk
0209 XOR DI,1B30 ;junk
020D CLD ;junk
020E ADD SI,3C38 ;junk

0212 INC BX ;* Increase the INDEX reg

0213 XOR DI,0B2C ;junk
0217 JMP 022F ;junk
021A OR BP,1C18 ;junk
021E JLE 0221 ;junk
0220 DEC BP ;junk
0221 ADC SI,0E32 ;junk
0225 AND DI,1522 ;junk
0229 CMP [BP+SI+36],BH ;junk
022C ROL SI,1 ;junk
022E RET ;junk
022F SHL DI,1 ;junk
0231 SHR DI,1 ;junk

0233 DEC DX ;* Dec the COUNT register (x3)
 ; Hence the 3x original size!

0234 JNZ 023F ;* Not zero then jump to 023Fh

0236 TEST CL,[BP+DI] ;junk
0238 ADC BP,012D ;junk

023C JMP 025B ;* Finished decrypting!

023F INC BP ;junk
0240 JNB 0246 ;junk
0242 CMP BX,0E2E ;junk
0246 TEST DI,SI ;junk
0248 SBB SI,3233 ;junk

024C MOV CX,018A ;* Set address of MAIN LOOP

024F ROL DI,1 ;junk
0251 SUB DI,BX ;junk
0253 SHR DI,1 ;junk
0255 TEST BL,[BX+DI+1C2E] ;junk

0259 PUSH CX ;* Stack LOOP address
025A RET ;* RETurn to MAIN LOOP

025B MOV SI,211F ;junk
025F CMP BL,[BX+DI] ;junk
0261 SUB BP,2D33 ;junk
0265 MOV BP,3735 ;junk
0269 XOR SI,SI ;junk
026B MOV BP,[0A38] ;junk

10/15

026F INC DI ;junk

0270 The encrypted code starts here.

;****************** End of decryptor 1 assembler listing. *******************

;Assembler listing for encryptor 2, size 480 bytes.
;--
;Size of the encrypted code was 07DBh (2011 bytes)
;The encrypted code started at address 02E0h

;This decryptor was generated to use the following registers:
;
; AX = Count of bytes in the encrypted code
; BX = Index pointing to the encrypted code
; DL = The encryption key
; CL = General work register

0100 NOT SI ;junk
0102 TEST CH,[BP+DI+0F] ;junk
0105 INC DI ;junk
0106 CLD ;junk
0107 ADC DI,132A ;junk
010B JPE 0111 ;junk
010D OR DI,332E ;junk
0111 INC SI ;junk
0112 TEST AL,CH ;junk
0114 JMP 0120 ;junk
0117 JPE 011D ;junk
0119 CMP DX,1909 ;junk
011D RCR DI,CL ;junk
011F RET ;junk
0120 INC DI ;junk
0121 TEST DI,BP ;junk
0123 JMP 0133 ;junk
0126 TEST DI,0E24 ;junk
012A TEST DI,093A ;junk
012E AND DI,SP ;junk
0130 CMP [BP+SI],BH ;junk
0132 RET ;junk
0133 MOV BP,0C28 ;junk
0137 TEST DH,CH ;junk
0139 TEST BP,1C16 ;junk
013D ROR BP,CL ;junk
013F JZ 0145 ;junk
0141 TEST DH,[BX] ;junk
0143 ADD DI,SP ;junk
0145 TEST CL,[SI+3435] ;junk
0149 MOV BP,2E08 ;junk
014D TEST CX,DI ;junk
014F CLD ;junk
0150 MOV SI,3831 ;junk
0154 AND BP,363E ;junk
0158 ROR DI,CL ;junk

11/15

015A CLC ;junk
015B JNS 0163 ;junk
015D SAR SI,1 ;junk
015F SBB DI,3308 ;junk
0163 SBB DI,362B ;junk

0167 MOV AX,07DB ;* Set up the COUNT register

016A AND DI,0F1E ;junk
016E JMP 0182 ;junk
0171 MOV DI,2F31 ;junk
0175 CMP CX,2212 ;junk
0179 SBB SI,2E14 ;junk
017D TEST BL,[SI+341D] ;junk
0181 RET ;junk
0182 CMP BH,19 ;junk

0185 MOV BX,B977 ;* Set up the INDEX register

0188 TEST AL,[DI+072C] ;junk
018C TEST DI,2306 ;junk
0190 SHR SI,1 ;junk

0192 MOV DX,CS ;* Get CODE SEG in DX

0194 CALL 0171 ;junk
0197 TEST SI,1410 ;junk
019B CLC ;junk
019C SHL DI,CL ;junk

019E MOV DS,DX ;* Make DATA SEG = CODE SEG

01A0 NEG SI ;junk
01A2 CALL 0171 ;junk
01A5 TEST CH,[BP+DI+070F] ;junk

01A9 MOV DL,8D ;* Set decrypt KEY register

01AB MOV DI,3A30 ;junk
01AF JMP 01B9 ;junk
01B2 JBE 01B5 ;junk
01B4 INC DI ;junk
01B5 NOT DI ;junk
01B7 CMC ;junk
01B8 RET ;junk
01B9 XOR CX,DX ;junk

01BB CALL 01B2 ;junk * Decryptor MAIN LOOP

01BE TEST SI,3029 ;junk
01C2 INC DI ;junk
01C3 SBB DI,1E19 ;junk
01C7 MOV DI,0038 ;junk
01CB RCR DI,CL ;junk
01CD MOV BP,1809 ;junk

12/15

01D1 NEG BYTE PTR [BX+4969] ;* NEG the byte at [BX + 4969]
 ; NOTE: original index B977h plus
 ; 4969h = 102E0h AND FFFFh = 02E0h!
 ; Which is the start of the
 ; encrypted code!

01D5 TEST BP,2A37 ;junk
01D9 CMP CX,2B37 ;junk
01DD JMP 01E2 ;junk
01E0 DEC DI ;junk
01E1 RET ;junk

01E2 MOV CL,[BX+4969] ;* Get the NEGed byte into CL

01E6 CMC ;junk
01E7 ROR DI,CL ;junk
01E9 INC BP ;junk
01EA TEST DI,281E ;junk
01EE JZ 01F3 ;junk
01F0 TEST BH,[BX+DI+05] ;junk
01F3 MOV DI,160C ;junk
01F7 SUB BP,BP ;junk

01F9 XOR CX,DX ;* XOR byte with the KEY

01FB TEST BL,[BP+DI+3C] ;junk
01FE JNB 0204 ;junk
0200 ADD BP,0A13 ;junk
0204 CMP [BX+DI],CL ;junk
0206 CALL 01E0 ;junk
0209 CALL 01E0 ;junk
020C DEC DI ;junk
020D AND DI,073A ;junk

0211 DEC AX ;* Decrease the COUNT register

0212 XOR DI,2036 ;junk
0216 NEG BP ;junk
0218 ADC DI,SP ;junk
021A CMC ;junk
021B CMP BL,[BX+SI] ;junk

021D DEC DX ;* Decrease the KEY register

021E ADC BP,1821 ;junk
0222 SHL DI,CL ;junk
0224 CMP AX,1816 ;junk
0228 SHL DI,1 ;junk
022A CMP AL,[BP+DI+1A] ;junk
022D MOV SI,1819 ;junk
0231 ADD SI,063B ;junk

0235 DEC DX ;* Decrease the KEY register

13/15

0236 SUB BP,0028 ;junk
023A AND BP,1930 ;junk
023E CLD ;junk
023F ADC BP,2D1D ;junk
0243 SAR DI,CL ;junk

0245 XCHG CX,DX ;* Swap CX & DX

0247 TEST CX,DX ;junk
0249 MOV SI,CX ;junk
024B XOR SI,030D ;junk
024F SUB DI,311C ;junk

0253 XCHG DL,[BX+4969] ;* Swap [index] & DL
 ; NOTE: This restores the decrypted byte!

0257 ADD DI,0E13 ;junk
025B CMP BL,[BP+DI+33] ;junk
025E CLD ;junk
025F NOT SI ;junk
0261 MOV SI,3F1C ;junk

0265 XCHG CX,DX ;* Swap CX & DX, restoring the KEY in DL

0267 MOV SI,221A ;junk
026B OR BP,0D2C ;junk
026F MOV DI,231B ;junk

0273 ADD BX,0001 ;* Increase the INDEX register

0277 JMP 0288 ;junk
027A ADC BP,AX ;junk
027C TEST BL,[DI+19] ;junk
027F TEST DI,0321 ;junk
0283 NEG DI ;junk
0285 ROL SI,CL ;junk
0287 RET ;junk
0288 SBB BP,1B0D ;junk
028C XOR BP,2A23 ;junk
0290 CMP DL,3A ;junk
0293 TEST BH,[DI] ;junk

0295 AND AX,AX ;* Test if COUNT is zero
0297 JNZ 02AD ;* Jump to 02ADh if not

0299 CALL 027A ;junk
029C AND DI,291F ;junk
02A0 JA 02A6 ;junk
02A2 MOV DI,0514 ;junk
02A6 ADC SI,1F2A ;junk

02AA JMP 02BC ;* Finished decrypting

02AD JMP 02B2 ;junk
02B0 CLC ;junk

14/15

02B1 RET ;junk
02B2 SHL DI,CL ;junk
02B4 CLD ;junk
02B5 ADD SI,2C1A ;junk

02B9 JMP 01BB ;* Jump to MAIN LOOP

02BC TEST BH,BL ;junk
02BE MOV DI,210C ;junk
02C2 SUB SI,1600 ;junk
02C6 CALL 02B0 ;junk
02C9 XOR SI,2F1D ;junk
02CD MOV BP,0430 ;junk
02D1 TEST BH,[DI+362A] ;junk
02D5 OR DI,1C21 ;junk
02D9 STC ;junk
02DA CMP DI,2828 ;junk
02DE CLC ;junk
02DF DEC BP ;junk

02E0 The encrypted code starts here.

;****************** End of decryptor 2 assembler listing. *******************

The following are the HEX dumps for both of the above decryptors, decryptor 1
is on the left and 2 is on the right. These dumps are to show that it would
be very difficult to find a signature that could be applied to each of these
decryptors in the hope of detecting them both, this is the main purpose of a
Polymorph Engine! To detect, therefore, you would have to write a program
that tries to use intelligence to work out if what it is looking at is a
Polymorph generated decryptor. This is prone to false alarms or, in certain
cases, missing the decryptor totally!

HEX DUMP OF ENCRYPTOR 1, 368 bytes HEX DUMP OF ENCRYPTOR 2, 480 bytes
---------------------------------- ----------------------------------
7901FCD3FE81FD0807F97F020BF181F7 F7D6846B0F47FC81D72A137A0481CF2E
213281C5050881E51235D3EEC7C6041B 334684C5E909007A0481FA0919D3DFC3
D3FF81D6062581D7111F1B2E3E0F81FD 4785FDE90D00F7C7240EF7C73A0923FC
1E3F4EF7D781E63D084681DF0301BA91 383AC3C7C5280C84F5F7C5161CD3CD74
17FC720285F01BFC853E1B25840CD1E5 04843703FC848C3534C7C5082E85CFFC
BB7D01F5C7C718127002D1DFF939FD8C C7C6313881E53E36D3CFF87906D1FE81
C8846F1781DD073147D1DD8ED8033E04 DF083381DF2B36B8DB0781E71E0FE911
3BB0507304C7C63914720213F8E90500 00C7C7312F81F9122281DE142E849C1D
C7C5361BC3D1DEBB2D842BF181CF0F0B 34C380FF19BB77B984852C07F7C70623
C7C53E1ED3D781ED122E033E2A2ED3C6 D1EE8CCAE8DAFFF7C61014F8D3E78EDA
8A8F437E740684BD3B2B3812D1C781DF F7DEE8CCFF84AB0F07B28DC7C7303AE9
3A264AE8CAFF8BF981D52E282AC8C7C6 0700760147F7D7F5C333CAE8F4FFF7C6
2A37F7C5103AE8B7FF81D61713FC4081 29304781DF191EC7C73800D3DFC7C509
F63D20E90B004FF52B2E243681F60002 18F69F6949F7C5372A81F9372BE90200
C3387C1381EA010081F8170581ED1628 4FC38A8F6949F5D3CF45F7C71E287403
81E6070881EE032ED1CD47D3DE84EE81 847905C7C70C162BED33CA845B3C7304
ED2610888F437E730481F7301BFC81C6 81C5130A3809E8D7FFE8D4FF4F81E73A
383C4381F72C0BE9150081CD181C7E01 074881F73620F7DD13FCF53A184A81D5

15/15

4D81D6320E81E72215387A36D1C6C3D1 2118D3E781F81618D1E73A431AC7C619
E7D1EF4A7509840B81D52D01E91C0045 1881C63B064A81ED280081E53019FC81
730481FB2E0E85FE81DE3332B98A01D1 D51D2DD3FF87CA85CA8BF181F60D0381
C72BFBD1EF84992E1C51C3C7C61F213A EF1C318697694981C7130E3A5B33FCF7
1981ED332DC7C5353733F68B2E380A47 D6C7C61C3F87CAC7C61A2281CD2C0DC7
 C71B2381C30100E90E0013E8845D19F7
 C72103F7DFD3C6C381DD0D1B81F5232A
 80FA3A843D23C07514E8DEFF81E71F29
 7704C7C7140581D62A1FE90F00E90200
 F8C3D3E7FC81C61A2CE9FFFE84FBC7C7
 0C2181EE0016E8E7FF81F61D2FC7C530
 0484BD2A3681CF211CF981FF2828F84D

Well, I hope this brief insight into the workings of a Polymorph Engine have
enlightened and possibly inspired you into having a go at writing one yourself?

(C) The Black Baron

