
1/6

The Complete Re-write Engine
vxug.fakedoma.in/archive/VxHeaven/lib/vmn03.html

VX Heaven

MidNyte

Final Chaos [1]

May 1999

Introduction

First of all, let me explain a Complete Re-write Engine (CRE) as I see it. I have thought of it

as something in the 'would be good if it could be done' category, and is a form of

metamorphism. A CRE would read in a piece of code, and work out a (random?) functional

equivalent, that is, produce a new and different piece of code that would produce the same

results. This has been talked of as a replacement for encryption in viruses. To write a CRE

you will need at least a basic understanding of polymorphism, emulation and disassembly.

You need to understand how the opcodes are formed to be able to manipulate them properly.

Also, let me explain that if you're looking for a step by step guide to writing a CRE, you're not

going to find one here, this is only a discussion of the main problems of creating one. I am

certainly not of the coding ability to create one yet, if one is even possible in practise. If you

think you can do one, go ahead, metamorphism is a unique alternative to polymorphism, but

don't think this is going to teach you how to do it. This is just my explanation of how I plan to

do it when I do have the ability.

The algorithms, methods and code produced by the end of this article will be messy and

awkward, but hopefully functional. The price to pay for code that works is often code that's

neat, at least for those who do too much writing and not enough coding like me. Also, please

note that the second and subsequent generations will be very difficult to read and/or debug,

because (obviously) the re-write engine will re-write itself along with the rest of the virus.

Any bugs in a later generation must be traced back to their creation, but this may be through

a buggy routine produced by a buggy routine etc.

The practical values of a CRE are that no scan string can be made from the code, as every part

of it can be changed from one generation to the next. Most heuristics are often defeated by

simply changing from obvious ways of doing things to an alternative, so it should be possible

for a CRE virus to evade them. The disadvantages are that some (most?) forms of anti-

debugging are code specific, so might be difficult or even impossible to incorporate (the stack

https://vxug.fakedoma.in/archive/VxHeaven/lib/vmn03.html
https://vxug.fakedoma.in/archive/VxHeaven/index.html
https://vxug.fakedoma.in/archive/VxHeaven/lib/index.html@lang=en&author=MidNyte.html
https://vxug.fakedoma.in/archive/VxHeaven/vx.php@fid=225.html#f225

2/6

checking trick for instance), and that keeping data within the CRE virus can be tricky.

Anyway, It's up to you to evaluate the usefulness of CRE. My personal opinion is that it will

only ever be a proof of concept thing, and that the limitations to it will always outweigh the

advantages. I'm hoping someone can prove me wrong. Anyway.....

The First Step

The first step in any major programming project is (or at least should be) planning the

algorithm. Our CRE would examine each instruction in turn and work out an equivalent

instruction or series of instructions. This alternative generating is much like conventional

polymorphism.

My approach to writing the algorithm would be too write the basic virus, then write the

instruction handlers for every instruction in the virus. Then when that's done, go back and

add handlers for every instruction that's in the instruction handlers we've just written. This

should require no new instructions to achieve, but if it does, make a note and write handlers

for them aswel. This is going to take time.

So our basic model is: (in pseudocode & assuming all instructions are one byte each, this is

only a demonstration.)

START:
 <get byte>
 <X = 1 to number_of_instructions>
 <is byte a type X insruction?>
 Y - jump to type_X_handler
 N - next X
 <else jump to data_handler>
 <all bytes done?>
 Y - exit
 N - get next byte

TYPE_X_HANDLER:
 <Y = random number (1 to number_of_type_X_alternatives)>
ALTERNATIVE_GENERATOR:
 <generate alternative Y>
 <return to start>

DATA_HANDLER:
 <copy data>
 <return to start>

Ok, by now you've noticed a few obstacles to overcome and things that need to be explained

more fully before we can move on.

First, data is data and cannot be changed without changing the functionality of the code. This

can easily be overcome in some cases however by loading the values into registers (ie, cmp

ax,80h could be cmp ax,bx instead if bx was first loaded with 80h). Some cases are more

difficult, like having a search string of '*.com' in amongst our code for instance. One possible

3/6

way to deal with this would be to store the string encrypted in a certain way. This series of

instructions (the decryption method) could then be handled by our CRE. This does however

lead to the difficulty of keeping track of where the string is within the file, but this can be

done by pointing to the address of the string from a set location. As the string will always

move, this will not create a stable byte. Or we could just put all the strings/data at the end of

the file and read them from there, using the filesize as a base reference to find them all.

Secondly, what if a data byte is the same number as the ordinal value of an instruction we

scan for? well, this is an inherent problem to the CRE concept (and emulators and

debuggers), but a quick work-around is to check each piece of randomly generated data

against a list of 'forbidden values', ie, our instruction set, and choose another if it will cause a

conflict. This does unfortunately need more data to be stored/created. Maybe those who have

knowledge of emulation systems could provide a better solution (hint hint), but at least in the

meantime we have a work-around.

(What if the pointer mentioned in the first point is the same number as an ordinal value of

one of our instructions? I guess we'd have to use two pointers added together to create the

address of the string to be safe, then at least we could keep altering them until neither

contained a hidden value.)

Thirdly, (not really a problem) our instruction handlers need to know what bytes that come

after the instruction byte are data. This is simply a matter of knowing the instruction's layout,

then loading the stack or registers with the appropriate numbers ready for use by the

alternative generator. This is where metamorphism differs from polymorphism quite

significantly. In polymorphism the code generator knows what values in has to attach to

instructions, in metamorphism it has to work it out for itself from code that it has previously

written.

Fourth, with all this generating of numbers instead of storing, aren't we going to get longer

each generation? Without a doubt. Every piece of code in the virus will be taken up by an

equivalent of at least the same length, probably more. Each piece of this new code will be

replaced in the next generation by an equivalent of at least the same length, probably more in

the generation after that, and so on. This would mean an exponential increase in the size of

the code. This is why the first advancement on the basic system is:

Code Shrinking

Code shrinking is the replacement of a long set of instructions with a shorter set of an

equivalent function. Our instruction handler is going to have to be able to recognise

instruction sequences that can be shrunk in the first place, so how about scanning the next

20 or so bytes for particular sequences relevant to the instruction we're on? The CRE would

produce most random code if the shrinking does not always shrink as much as possible.

Maybe you could give it a percentage chance of shrinking and play with that value until the

optimum is reached. If we get this part right, our code should grow from it's first generation

4/6

(because it's in it's simplest state when it's written) until it reaches an average size that it

fluctuates around (when the shrinking it does roughly balances the increases it makes). If it

doesn't become stable, then either your alternatives are too lengthy, your shrinker isn't good

enough or both. If the fluctuation in size is too drastic or just not to your liking, you could

always bias your shrinking dependant on the size of the code, ie, more shrinking when the

filesize is high. As long as the biasing is not too strong it should calm down the fluctuation

too, brush up on your chaos theory if you want to know why. Chaos theory also tells us that

too strong a bias may well lead to a predictable oscillation by the way, and the last thing we

want is anything predictable. Anyway, We now have:

START:
 <get byte>
 <X = 1 to number_of_instructions>
 <is byte a type X insruction?>
 Y - jump to type_X_shrinker
 N - next X
 <else jump to data_handler>
 <all bytes done?>
 Y - exit
 N - get next byte

TYPE_X_SHRINKER:
 <push si>
 <Y = 1 to 20>
 <read next byte>
 <is byte related to instruction X>
 Y - SHRINKABLE=TRUE ; save shrinkable byte to mem
 N - ignore
 <loop Y>
 <is shrinkable=true>
 Y - jump to shrink_X
 N - continue
 <Y = random number (1 to number_of_type_X_alternatives)>

ALTERNATIVE_GENERATOR:
 <generate alternative Y>
 <return>
SHRINK_X:
 <calculate alternative from saved bytes>
 <return>

DATA_HANDLER:
 <copy data>
 <return>

So, now we have a structure to work on. This is the part where each instruction must be dealt

with individually. You'll notice I wrote 'is byte related to instruction X' in the above

pseudocode. Well, that's up to you to decide how all the instructions are related, or more

accurately, up to your alternative generator. For example if your CRE's only alternatives to

'MOV AH,80h' are 'MOV AL,80h / XCHG AL,AH' then for your MOV_SHRINKER you will

5/6

only have to check for the MOV and XCHG instructions. If you also have the possibility of

'MOV AH,40h / ADD AH,10h / ADD AH,10h / ADD AH,10h / ADD AH,10h' then you'll have

to check for ADD's aswell.

One thing to watch though, is that every alternative that you make that increases the amount

of instructions should be recognised and handled by your shrinker. If you don't, it can

happen that your code makes an alternative that the shrinker doesn't recognise, and then

that particular bit of code can never be as small as it used to be. This makes the code less

random and larger, not a real problem for just one instance, but obviously the more it

happens the more it becomes a problem. This will cause a particular problem if a longer

replacement for a common instruction that your generator makes isn't recognised by your

shrinker and if the replacement contains similar instructions to the original (ie, making 'ADD

AX,40h' into 'ADD AX,20h / ADD AX,20h' in one generation, each 'ADD AX,20h' in the next

becoming 'ADD AX,10h / ADD AX,10h'). This would create a sequence that could only ever

get bigger as generations went by, each one expanding the sequence but never shrinking.

Other advancements would be to have your alternative generators or shrinkers be aware of

consecutive instructions, ie, 'MOV AH,80h / MOV BH 40h' could become 'MOV AH,80h /

MOV BH,AH / SHL BH,1', or you could interleave the equivalents of consecutive

instructions, ie, 'MOV AH,80h / MOV BH 40h' could be 'XOR AH,AH / XOR BH,BH / ADD

AH,80h / ADD BH,40h'. I have already incorporated a mechanism for skipping unrelated

instructions (ie, searching ahead for relevant instructions, not just assuming that they're the

next ones you come across), but haven't put in any way of ensuring that the same instruction

is not taken by the shrinker to be part of two instruction sets, ie, using it twice. I'll leave it to

you to sort all that out, and I'll concentrate on learning to code properly while you're doing all

that.

Do be aware that any complications to the layout of instructions your alternative generator

makes, again your shrinker should be able to handle if you don't want your filesize to (sooner

or later) increase out of control.

Conclusion

There we are then, I've just told you what needs doing, admitted couldn't do it, and now I'm

sitting back waiting for a CRE with a big credit to me to appear..... no, seriously, a CRE is

possible in theory as long every instruction can be emulated by using other instructions, in

practice though there are a lot of problems. Whether or not these can be overcome enough to

create a fully functioning CRE-equipped virus or not is another matter, especially if the

practical value of this idea isn't much in the eyes of the reader. Personally, I see

polymorphism as a middle ground (although more than adequate, providing the encryption

is strong) between a simple encrypted virus and metamorphism, so a CRE should at least be

6/6

created and tested. I will eventually learn enough to do one, and I will do one, but until then I

don't want to be keeping these ideas to myself, just in case anyone finds something useful in

all that. Good luck!

 - MidNyte

As always, I welcome ANY feedback, good or bad, as long as it is reasonable.

