
1/12

Understanding and Managing Polymorphic Viruses
ivanlef0u.fr/repo/madchat/vxdevl/vdat/epunders.htm

Understanding and Managing Polymorphic Viruses

 
Carey Nachenberg

 
[Symantec 1996]

Introduction

Polymorphic computer viruses are the most complex and difficult viruses to detect, often

requiring anti-virus companies to spend days or months creating the detection routines

needed to catch a single polymorphic.

This white paper provides an overview of polymorphics and existing methods of detection,

and introduces Symantec’s Striker ™ technology, a new, patent-pending method for

detecting polymorphics.

Norton AntiVirus 2.0 for Windows 95 is the first Symantec anti-virus product to include

Striker; Symantec will integrate Striker into other Norton anti-virus products as it introduces

new editions.

 

The Evolution of Polymorphic Viruses

A computer virus is a self-replicating computer program that operates without the consent of

the user. It spreads by attaching a copy of itself to some part of a program file, such as a

spreadsheet or word processor. Viruses also attack boot records and master boot records,

which contain the information a computer uses to start up. Macro viruses attack such files as

word processing documents or spreadsheets.

Most viruses simply replicate. Some display messages. Some, however, deliver a payload — a

portion of the virus program that is designed to corrupt programs, delete files, reformat a

hard disk, or crash a corporate-wide network, potentially wiping out years of data and

destroying critical information.

Simple Viruses

A simple virus that merely replicates itself is the easiest to detect. If a user launches an

infected program, the virus gains control of the computer and attaches a copy of itself to

another program file. After it spreads, the virus transfers control back to the host program,

which functions normally.

https://ivanlef0u.fr/repo/madchat/vxdevl/vdat/epunders.htm


2/12

Yet no matter how many times a simple virus infects a new file or floppy disk, for example,

the infection always makes an exact copy of itself. Anti-virus software need only search, or

scan, for a tell-tale sequence of bytes — known as a signature — found in the virus.

Encrypted Viruses

In response, virus authors began encrypting viruses. The idea was to hide the fixed signature

by scrambling the virus, making it unrecognizable to a virus scanner.



3/12

 

An encrypted virus consists of a virus decryption routine and an encrypted virus body. If a

user launches an infected program, the virus decryption routine first gains control of the

computer, then decrypts the virus body. Next, the decryption routine transfers control of the

computer to the decrypted virus.

An encrypted virus infects programs and files as any simple virus does. Each time it infects a

new program, the virus makes a copy of both the decrypted virus body and its related

decryption routine, encrypts the copy, and attaches both to a target.

To encrypt the copy of the virus body, an encrypted virus uses an encryption key that the

virus is programmed to change from infection to infection. As this key changes, the

scrambling of the virus body changes, making the virus appear different from infection to

infection. This makes it extremely difficult for anti-virus software to search for a virus

signature extracted from a consistent virus body.

However, the decryption routines remain constant from generation to generation — a

weakness that anti-virus software quickly evolved to exploit. Instead of scanning just for

virus signatures, virus scanners were modified to also search for the tell-tale sequence of

bytes that identified a specific decryption routine.

Polymorphic Viruses

In retaliation, virus authors developed the polymorphic virus. Like an encrypted virus, a

polymorphic virus includes a scrambled virus body and a decryption routine that first gains

control of the computer, then decrypts the virus body.

However, a polymorphic virus adds to these two components a third — a mutation engine

that generates randomized decryption routines that change each time a virus infects a new

program.

In a polymorphic virus, the mutation engine and virus body are both encrypted. When a user

runs a program infected with a polymorphic virus, the decryption routine first gains control

of the computer, then decrypts both the virus body and the mutation engine. Next, the



4/12

decryption routine transfers control of the computer to the virus, which locates a new

program to infect.

At this point, the virus makes a copy of both itself and the mutation engine in random access

memory (RAM). The virus then invokes the mutation engine, which randomly generates a

new decryption routine that is capable of decrypting the virus, yet bears little or no

resemblance to any prior decryption routine. Next, the virus encrypts this new copy of the

virus body and mutation engine. Finally, the virus appends this new decryption routine,

along with the newly encrypted virus and mutation engine, onto a new program.

As a result, not only is the virus body encrypted, but the virus decryption routine varies from

infection to infection. This confounds a virus scanner searching for the tell-tale sequence of

bytes that identifies

a specific decryption routine.

With no fixed signature to scan for, and no fixed decryption routine, no two infections look

alike.The result is a formidable adversary.

The Scale of the Problem

The Tequila and Maltese Amoeba viruses caused the first widespread polymorphic infections

in 1991.

In 1992, in a harrowing development, Dark Avenger, author of Maltese Amoeba, distributed

the Mutation Engine, also known as MtE, to other virus authors with instructions on how to

use it to build still more polymorphics.

It is now common practice for virus authors to distribute their mutation engines, making

them widely available for other virus authors to use as if they were do-it-yourself kits.

Today, anti-virus researchers report that polymorphic viruses comprise about five percent of

the more than 8,000 known viruses.

Of these, SARC reports only a small number of polymorphics “in the wild” — just 20 as of

mid-1996. Yet this represents an increase of 25 percent from 16 polymorphics in the wild in

mid-1995, a year earlier. Also, anti-virus researchers have identified 50 mutation engines.

SARC reports 13 mutation engines in the wild as of mid-1996, up 30 percent in one year from

10 mutation engines reported in the wild as of mid-1995.

Two polymorphics — One Half and Natas — rank among the 20 most-prevalent computer

viruses, according to the 1996 Computer Virus Prevalence Survey conducted by the National

Computer Security Association (NCSA).

https://ivanlef0u.fr/repo/madchat/vxdevl/vdat/engine1.htm#MTE


5/12

One Half slowly encrypts a hard disk. Natas, also known as SatanBug.Natas, is highly

polymorphic, designed to evade and attack anti-virus software. It infects .COM and .EXE

program files.

Polymorphic Detection

Anti-virus researchers first fought back by creating special detection routines designed to

catch each polymorphic virus, one by one. By hand, line by line, they wrote special programs

designed to detect various sequences of computer code known to be used by a given mutation

engine to decrypt a virus body.

This approach proved inherently impractical, time-consuming, and costly. Each new

polymorphic requires its own detection program. Also, a mutation engine produces

seemingly random programs, any of which can properly perform decryption — and some

mutation engines generate billions upon billions of variations.

Moreover, many polymorphics use the same mutation engine, thanks to the Dark Avenger

and other virus authors who have distributed engines. Also, different engines used by

different polymorphics often generate similar decryption routines, which makes any

identification based solely on decryption routines wholly unreliable.

This approach also leads to mistakenly identifying one polymorphic as another. These

shortcomings led anti-virus researchers to develop generic decryption techniques that trick a

polymorphic virus into decrypting and revealing itself.

Generic Decryption

Generic decryption assumes:

The body of a polymorphic virus is encrypted to avoid detection.

A polymorphic virus must decrypt before it can execute normally.

Once an infected program begins to execute, a polymorphic virus must immediately

usurp controlof the computer to decrypt the virus body, then yield control of the

computer to the decrypted virus.

A scanner that uses generic decryption relies on this behavior to detect polymorphics. Each

time it scans a new program file, it loads this file into a self-contained virtual computer

created from RAM. Inside this virtual computer, program files execute as if running on a real

computer.

The scanner monitors and controls the program file as it executes inside the virtual

computer. A polymorphic virus running inside the virtual computer can do no damage

because it is isolated from the real computer.



6/12

When a scanner loads a file infected by a polymorphic virus into this virtual computer, the

virus decryption routine executes and decrypts the encrypted virus body. This exposes the

virus body to the scanner, which can then search for signatures in the virus body that

precisely identify the virus strain. If the scanner loads a file that is not infected, there is no

virus to expose and monitor. In response to nonvirus behavior, the scanner quickly stops

running the file inside the virtual computer, removes the file from the virtual computer, and

proceeds to scan the next file.

The process is like injecting a mouse with a serum that may or may not contain a virus, and

then observing the mouse for adverse affects. If the mouse becomes ill, researchers observe

the visible symptoms, match them to known symptoms, and identify the virus. If the mouse

remains healthy, researchers select another vial of serum and repeat the process.



7/12



8/12

The key problem with generic decryption is speed. Generic decryption is of no practical use if

it spends five hours waiting for a polymorphic virus to decrypt inside the virtual computer.

Similarly, if generic decryption simply stops short, it may miss a polymorphic before it is able

to reveal enough of itself for the scanner to detect a signature.

Heuristic-Based Generic Decryption

To solve this problem, generic decryption employs “heuristics,” a generic set of rules that

helps differentiate non-virus from virus behavior.

As an example, a typical nonvirus program will in all likelihood use the results from math

computations it makes as it runs inside the virtual computer. On the other hand, a

polymorphic virus may perform similar computations, yet throw away the results because

those results are irrelevant to the virus. In fact, a polymorphic may perform such

computations solely to look like a clean program in an attempt to elude the virus scanner.

Heuristic-based generic decryption looks for such inconsistent behavior. An inconsistency

increases the likelihood of infection and prompts a scanner that relies on heuristic-based

rules to extend the length of time a suspect file executes inside the virtual computer, giving a

potentially infected file enough time to decrypt itself and expose a lurking virus.



9/12

Unfortunately, heuristics demand continual research and updating. Heuristic rules tuned to

detect 500 viruses, for example, may miss 10 of those viruses when altered to detect 5 new

viruses.

Also, as virus writers continue trying to make viruses look like clean programs, heuristics can

easily balloon to the point where almost any program might share attributes that trigger the

scanner to lengthen the time it takes to examine a file.

In addition, generic decryption must rely on a team of anti-virus researchers able to analyze

millions of potential virus variations, extract a signature, then modify a set of heuristics while

also guarding against the implications of changing any heuristic rules. This requires

extensive, exhaustive regression testing. Without this commitment, heuristics quickly

becomes obsolete, inaccurate, and inefficient.

The Striker System

Symantec’s Striker system provides anti-virus researchers with a new weapon to detect

polymorphics.

Like generic decryption, each time it scans a new program file, Striker loads this file into a

selfcontained virtual computer created from RAM. The program executes in this virtual

computer as if it were running on a real computer.

However, Striker does not rely on heuristic guesses to guide decryption. Instead, it relies on

virus profiles or rules that are specific to each virus, not a generic set of rules that

differentiate nonvirus from virus behavior.

When scanning a new file, Striker first attempts to exclude as many viruses as possible from

consideration, just as a doctor rules out the possibility of chicken pox if an examination fails

to detect scabs on a patient’s body.



10/12

For example, different viruses infect different executable file formats. Some infect only .COM

files. Others infect only .EXE files. Some viruses infect both. Very few infect .SYS files. As a

result, as it scans an .EXE file, Striker ignores polymorphics that infect only .COM and .SYS

files. If all viruses are eliminated from consideration, then the file is deemed clean. Striker

closes it and advances to scan the next file.

If this preliminary scan does not rule out infection, Striker continues to run the file inside the

virtual computer as long as the behavior of the suspect file is consistent with at least one

known polymorphic or mutation engine.

For example, one polymorphic virus is known to perform math computations and throw

away the results. A second polymorphic may never perform such calculations. Instead, it may

use specific random instructions in its decryption routine. A third polymorphic may call on

the operating system as it decrypts.

Striker catalogs these and nearly 500 other characteristics into each virus profile, one for

each polymorphic and mutation engine.

Consider a set of generic heuristic rules that identify A, B, C, D, and E as potential virus

behaviors. In contrast, a Striker profile calls for Virus 1 to execute behaviors A, B, and C. As it

decrypts, Virus 2 executes behaviors A, B, and D, while Virus 3 executes behaviors B, D, and

E.

If Striker observes behavior A while running a suspect file inside the virtual computer, this is

consistent with viruses 1 and 2. However, it is not consistent with Virus 3. Striker eliminates

Virus 3 from consideration.

The heuristic-based system must continue searching for all three viruses, however, because it

observes behavior that is consistent with its generic rules.

If Striker next observes behavior B, this is consistent with viruses 1 and 2. Striker must

continue scanning for these two viruses. However, the heuristics again continue to search for

all three viruses.

Finally, if Striker observes behavior E, this eliminates Virus 2 from consideration, and Striker

now pursues a single potential virus.

The heuristic-based scanner continues to search for all three viruses.

Under Striker, this process continues until the behavior of the program running inside the

virtual computer is inconsistent with the behavior of any known polymorphic or mutation

engine. At this point, Striker excludes all viruses from consideration.

On the other hand, a heuristic-based system scans for all viruses all the time. It must find

some behavior inconsistent with all behaviors.



11/12

Striker’s Strategic Advantages

Clearly the first advantage to Striker’s approach is speed. The profiles enable Striker to

quickly exclude some polymorphic viruses and home in on others. In contrast, heuristics

labor on, scanning all program files against all available generic rules of how all known

polymorphics and all known mutation engines might behave.

The profiles also enable Striker to process uninfected files quickly, minimizing impact on

system performance. In contrast, heuristic-based scanning is more likely to decrease system

performance, because uninfected files must also be scanned against all generic rules for how

all known polymorphics and mutation engines might behave.

Second, anti-virus researchers are no longer forced to rewrite complex heuristic rules to scan

for each new virus, then exhaustively test and retest to ensure they do not inadvertently miss

a polymorphic the software previously detected.

Third, with Striker, a team of anti-virus researchers may work in parallel, building profiles

for many new polymorphic viruses, swiftly adding each to Striker. Each profile is unique,

much like a virus signature, independent of any other profile. The old profiles still work, and

the new profile does not affect the old. Exhaustive, time-consuming regression testing is no

longer necessary. It becomes easy to update anti-virus software by compiling new virus

profiles into the Norton Antivirus database file that is posted online monthly or obtained on

floppy disk.

Outlook

To date, generic decryption has proved to be the single most effective method of detecting

polymorphics. Striker improves on this approach.

Yet it is only a matter of time before virus authors design some new, insidious type of virus

that evades current methods of detection.

Virus authors might design a polymorphic virus that decrypts half the time, for example, yet

remains dormant at other times. Anti-virus software could not reliably detect such a virus if it

does not decrypt itself every time the file is loaded into the virtual computer. In this case, a

hand-coded detection routine will be needed.

Or, imagine a host program that waits for the user to press a specific key and then

terminates. A polymorphic infecting this host might only take control just after the user

enters the required key-stroke. If the user enters the keystroke, the virus runs. If not, the

virus gets no opportunity to launch.

However, inside the virtual computer created by generic decryption, the program would

never receive the needed keystroke — and the virus would never have a chance to decrypt.



12/12

A small number of viruses are already resistant to detection by generic decryption. There’s no

doubt that virus authors will continue to design new viruses, using new technologies, creating

new problems. Anti-virus researchers will need to deal with these new threats, just as Striker

today delivers the solution that best protects computer users against polymorphics.

 

 


