
 

 

Hyper-V internals 

Great thanks to ERNW for the translation of the article! 

Original article: 

https://hvinternals.blogspot.com/2017/10/hyper-v-debugging-for-beginners-part-2.html 

Root-section (parent partition, root OS) - Windows Server 2012 R2 with the included component of Hyper-V; 

Guest operating systems - virtual machine Hyper-V installed Windows Server 2012 R2; 

TLFS – Hypervisor Top-Level Functional Specification: Windows Server  2012 R2; 

LIS – Linux Integration Services 

 

Finding a bug, which later received the number MS13-092 (error component Hyper-V Windows Server 2012 allows you 
to send a hypervisor in BSOD from the guest operating system or run arbitrary code in other guest operating systems which are 
running on a vulnerable host server), it was very unpleasant surprise for Microsoft Engineers. Before that, for almost three years, 
no one has discovered a vulnerability in Hyper-V. It was only the MS10-102, which were found at the end of 2010. During those 
four years, the popularity of cloud services increased greatly, and researchers are more and more interested in security hypervisor 
underlying cloud systems. (Another bug MS15-042 was fixed but there is no detailed overview of this). 

However, the number of publicly available work is low: the researchers are reluctant to spend their time exploring such 
complex and poorly documented architectural solutions. This article does not describe the specific vulnerabilities of the 
hypervisor, but it should shed light on the inner workings of Hyper-V, and thereby partially simplify future research.  

 
This article will describe some features of the hypervisor, in particular the component of the vmbus message processing 

mechanism using the steal a hypervisor mechanism. (Before reading the article, it is recommended to get acquainted with the 
report from ERNW (http://goo.gl/1Cvotv) and «Hyper-V debugging for beginners» http://goo.gl/A4vH0W, and Hypervisor TLFS 
(http://goo.gl/9dISj7) 

 
At the time of writing the article the used Hyper-V server and guest OS was Windows Server 2012 R2 Update 1 (machine 

type-1 Generation), but to reflect some of the features of the components we´ve used other versions of the Windows operating 
system, which will be stated in this article. For a test environment, you have to deploy the VMware Workstation 12.  

 
1.VMBUS 

 
In a nutshell the VMBUS is a technology of interaction between the guest operating systems and root OS accordingly. 
There are components in the guest and root OS that implements this interaction through the interfaces provided by 

the hypervisor and described in TLFS 4.0(a). Microsoft developed the components for Linux-like guest operating systems, which 
are already integrated into the kernel (https:/github. com/LIS). 

 
Starting with Windows Server 2008, the Windows kernel functions were optimized for the operating system in a virtual 

environment Hyper-V. For comparison, in the core of Windows Server 2008 (x64) are 25 functions implemented with the prefix 
Hvl, which identifies them as belonging to a library to integrate with the hypervisor. Windows Server 2012 R2 has 109 Hvl-
functions already. Windows Server 2016 TP2 has 12 Hvi-functions and 230 Hvl-functions. 

 
Consider, how the components of VMBUS interacts with the hypervisor, root and guest OS. First look into the source 

code of LIS and see that the VMBUS is a device which supports ACPI. ACPI devices can be viewed by using the ACPI Utility tool, 
included in the AIDA64 version 3. XX (later it was removed). With its help in SB_.PCI0.SBRG it detected 2 devices: VMB8 and 
VMBS. 

 
Dump ACPI DSDT table that contains information on peripheral devices and functions of the hardware platform, using 

the same tools and ACPI Tool to decompile AML-disassembler (http://goo.gl/1pOZPX) in ASL. We obtain: 

https://hvinternals.blogspot.com/2017/10/hyper-v-debugging-for-beginners-part-2.html
http://goo.gl/1Cvotv
http://goo.gl/A4vH0W
http://www.microsofttranslator.com/bv.aspx?from=ru&to=en&a=https%3A%2F%2Fgithub.com%2FLIS


 

 

 
A superficial reading of ACPI Specification 5.0 made it clear that if the guest OS is Windows 6.2 and higher, the device 

will consume VMB8, otherwise VMBS. The only difference between these devices is the presence of an object _UID (UniqID), 
which is present in the VMB8. According to the ACPI specification, the presence of that object in the table is optional and is only 
required if the device can not present to operating system permanent unique ID. Also became a known resources that used by 
device - interrupt 5 and 7. 

 
 For comparison, in the virtual machine type Generation 2 there are only the devices VMBS placed in _SB_. VMOD. 
VMBS, (but with the object _UID) which using only interrupt 5: 
 

 
Routines, that dispatch interrupts, register in interrupt dispatch table (IDT). Meanwhile we found on ACPI DSDT IRQ 5 

and 7 that the handlers in the IDT having no direct connection, and to compare its interruption handler, Windows uses the referee 

interrupts (generally, there are several classes of arbitrators, in addition IRQ, - DMA, I / O, memory). All about the arbitrators can 

be found in the MSDN blog (http://goo.gl/FuvG4R, http://goo.gl/V3UV8e, http://goo.gl/h1vXaf) 

Information about registered arbitrators can be seen in WinDBG with the command !acpiirqarb. 

kd> !acpiirqarb – for the Guest Windows Server 2012 R2 Gen1: 

 
The output shows that the IRQ 7 address handler that will be in the 0x71 cell of IDT, for IRQ 5 - 0x81. Generation numbers 
interrupt handlers are using the acpi!ProcessorReserveIdtEntries function at the stage of construction of the device tree PnP-
manager, when the functional device driver is not already loaded. Register ISR in the IDT has been going in the later stages, for 



 

 

example, when the device driver procedure IoConnectInterrupt will be executed. However, looking at the elements of IDT, we 
see that the ISR for the interrupt of 0x71 and 0x81 is not registered:  
 
kd> !idt -a 
……………………………………………………………………………………………………………………………. 
71: fffff80323f73938 nt!KxUnexpectedInterrupt0+0x388 
81: fffff80323f739b8 nt!KxUnexpectedInterrupt0+0x408 
……………………………………………………………………………………………………………………………. 
 
In Windows Server 2012 R2 Gen2 for IRQ 5 was mapped 0x90 the IDT. 
kd> !acpiirqarb – for guest Windows Server 2012 R2 Gen2 
 
Processor 0 (0, 0): 
Device Object: 0000000000000000 
Current IDT Allocation: 
 0000000000000000 - 0000000000000050 00000000 <Not on bus> A:0000000000000000 IRQ(GSIV):10 
 0000000000000090 - 0000000000000090 D ffffe001f35eb520 (vmbus) A:ffffc00133972660 IRQ(GSIV):5 
……………………………………………………………………………………………………………………………. 
ISR -procedure for interrupt 0x90 also is not defined: 
kd> !idt -a 
90: fffff8014a3daa30 nt!KxUnexpectedInterrupt0+0x480 
 
In Windows 8.1x86 we see a slightly different picture 
kd> !acpiirqarb – for Windows 8.1 x86 
 
Processor 0 (0, 0): 
Device Object: 00000000 
Current IDT Allocation: 
……………………………………………………………………………………………………………………………. 
 0000000000000081 - 0000000000000081 D 87f2f030 (vmbus) A:881642a8 IRQ(GSIV):fffffffe – such values are generally 
associated with MSI-devices. 
……………………………………………………………………………………………………………………………. 
 00000000000000b2 - 00000000000000b2 S B 87f31030 (s3cap) A:8814b840 IRQ(GSIV):5 
 
In addition, for interrupt number 0x81 ISR-defined procedure vmbus!XPartPncIsr: 
kd> !idt 
 
81: 81b18a0c vmbus!XPartPncIsr (KINTERRUPT 87b59e40) 
b2: 81b18c58 nt!KiUnexpectedInterrupt130 
 
s3cap - auxiliary driver to work with Hyper-V emulated video card S3 Trio. 

 
 

Thus ISR vmbus! XPartPncIsr registered in the IDT only in Windows 8.1 x86 (presumably in other x86 operating systems 
that support Microsoft as a guest operating system for Hyper-V, using the same method). Procedure vmbus!XPartPncIsr used for 
handling interrupts is generated by the hypervisor. 

 
In x 64-bit systems, starting with Windows 8 \ Windows Server 2012, integration with the hypervisor is implemented 

slightly differently. In the IDT system and interrupt handlers have been added which were generated by the hypervisor. Let us 
briefly consider how the IDT is formed at the stage of Windows loading. 

 
After initialization the Windows loader winload.efi IDT looks as follows (output of the script pykd from a WinDBG 

breakpoint in winload.efi during the boot process with the parameter / bootdebug): 
kd> !py D:\hyperv4\idt_winload_parse.py 



 

 

isr 1 address = winload!BdTrap01 
isr 3 address = winload!BdTrap03 
isr d address = winload!BdTrap0d 
isr e address = winload!BdTrap0e 
isr 29 address = winload!BdTrap29 
isr 2c address = winload!BdTrap2c 
isr 2d address = winload!BdTrap2d 
 

then during winload!OslArchTransferToKernel IDT is cleared and control is passed to the kernel of Windows, where a function 
nt!KiInitializeBootStructures initialized IDT with the values from the table KiInterruptInitTable: 
 
kd> dps KiInterruptInitTable L40 
………………………………………………………………………………………. 
fffff800`1b9553c0 00000000`00000030 
fffff800`1b9553c8 fffff800`1b377160 nt!KiHvInterrupt 
fffff800`1b9553d0 00000000`00000031 
fffff800`1b9553d8 fffff800`1b3774c0 nt!KiVmbusInterrupt0 
fffff800`1b9553e0 00000000`00000032 
fffff800`1b9553e8 fffff800`1b377810 nt!KiVmbusInterrupt1 
fffff800`1b9553f0 00000000`00000033 
fffff800`1b9553f8 fffff800`1b377b60 nt!KiVmbusInterrupt2 
fffff800`1b955400 00000000`00000034 
fffff800`1b955408 fffff800`1b377eb0 nt!KiVmbusInterrupt3 
………………………………………………………………………………………. 
Accordingly, handlers traps 0x30-0x34 IDT after the initialization would look similar to the following: 
 
kd> !idt 
………………………………………………………………………………………. 
30: fffff8001b377160 nt!KiHvInterrupt 
31: fffff8001b3774c0 nt!KiVmbusInterrupt0 
32: fffff8001b377810 nt!KiVmbusInterrupt1 
33: fffff8001b377b60 nt!KiVmbusInterrupt2 
34: fffff8001b377eb0 nt!KiVmbusInterrupt3 
………………………………………………………………………………………. 
 

What's interesting, the second generation of the virtual machine can be only created on the basis of operating systems 
when the kernel containing these 5 additional handlers. In order to generate interrupts Intel has a hardware feature "virtual 
interrupt delivery", but Hyper-V does not use the opportunity to transfer control to these handlers. Instead, the hypervisor 
activates bit corresponding to the number of the vector in the special memory area by using instructions locks bts [rcx + 598h], 
rax, where in rax - interrupt vector number (0x30-0x32), so perhaps developers of Hyper-V considered an option with the 
registration procedure vmbus!XPartPncIsr handler as less productive solution than the option of the interrupt generation by the 
APIC virtualization from the data in the virtual registers SINTx.  

These handlers are registered with IDT, even when the operating system runs out of the Hyper-V environment. Each 
handler calls HvlRouteInterrupt, passing the 
index as a parameter. 
 

       
HvlRouteInterrupt: 

 



 

 

 
This function calls a handler from an array of pointers HvlpInterruptCallback depending of value of the index. An array in the root 
OS looks as follows: 
 
5: kd> dps HvlpInterruptCallback  
fffff802`fff5cc30 fffff800`dc639d50 winhvr!WinHvOnInterrupt 
fffff802`fff5cc38 fffff800`dd5a9ec0 vmbusr!XPartEnlightenedIsr 
fffff802`fff5cc40 fffff800`dd5a9ec0 vmbusr!XPartEnlightenedIsr 
fffff802`fff5cc48 fffff800`dd5a9ec0 vmbusr!XPartEnlightenedIsr 
fffff802`fff5cc50 fffff800`dd5a9ec0 vmbusr!XPartEnlightenedIsr 
fffff802`fff5cc58 00000000`00000000 
 
XPartEnlightenedIsr on index, passed from KiVmbusInterruptX, adds to the DPC queue of one of two possible functions from the 
array of DPC structures in vmbusr: vmbusr! ParentInterruptDpc or vmbusr! ParentRingInterruptDpc: 
 

 
 



 

 

 
 
The number of 2 elements DPC structures (one for nt!KiVmbusInterrupt0, second – nt!KiVmbusInterrupt1) in the array is 
determined by the function vmbusr!XPartPncPostInterruptsEnabledParent and depends on the number of logical processors in 
the root OS. DPC is added for each logical processor with deferred routines   vmbusr!ParentInterruptDpc and 
vmbusr!ParentRingInterruptDpc. Function vmbusr!ParentRingInterruptDpc defines the address of KDPC-stucture for the 
nt!KeInsertQueueDpc based on the fact on which the processor is currently executing.  
 
In a Windows guest OS, vmbus registers in the array HvlpInterruptCallback only one handler: 
 
1: kd> dps HvlpInterruptCallback  
fffff803`1d171c30 fffff800`6d7c5714 winhv!WinHvOnInterrupt 
fffff803`1d171c38 fffff800`6d801360 vmbus!XPartEnlightenedIsr 
fffff803`1d171c40 00000000`00000000 
 

Array HvlpInterruptCallback is filled by function nt!HvlRegisterInterruptCallback. Handler WinHvOnInterrupt is 
registered during loading winhvr.sys (winhvr! WinHvpInitialize-> winhvr! WinHvReportPresentHypervisor-> winhvr! 
WinHvpConnectToHypervisor-> nt! HvlRegisterInterruptCallback). 

 
The rest of the 4 handler registered by vmbusr.sys when it loads by PnPManager (vmbusr! 

RootDevicePrepareHardwareParent-> nt! HvlRegisterInterruptCallback). 
 

Let's try to understand how the hypervisor passes the control to the system interrupt handlers which were described 
above. To do this, you must refer to the Virtual Interrupt Control TLFS. In short, the Hyper-V manages interrupt in the guest OS 
through a synthetic interrupt controller (SynIC), which is an extension of the local APIC and uses an extra set of registers displayed 
in the memory (memory mapped registers). Each virtual processor in addition to the usual APIC has additional SynIC. SynIC 
contains 2 pages: SIM (synthetic interrupt message) and SIEF(synthetic interrupt event flags), SIEF and SIM are arrays of 16 
elements, the element size - 256 bytes. The physical address (to be more precise, the Guest Physical Address) of these arrays are 
located in the MSR-registers SIEF and SIMP respectively. The addresses of these pages for each logical CPU would be different. 
Also for SynIC defined 16 SINTx-registers. Each of the array elements in SIM and SIEF compared with the corresponding register 
SINTx. WinDBG shows the contents of the SINTx registers using the !apic command (since WinDBG 6.3). 
 
Root ОS: 



 

 

 
Guest OS: 

 
Configuration of registers SINT0 and SINT1 are performed by the function nt!HvlEnlightenProcessor by recording the 

parameters in MSR 40000090h and 40000091h respectively. SINT4 and SINT5 are configured in vmbusr.sys: 
vmbusr!XPartPncPostInterruptsEnabledParent-> winhvr!WinHvSetSint-> winhvr!WinHvSetSintOnCurrentProcessor. SINT2 in the 
guest operating system is configured in vmbus.sys which called winhv!WinHvSetSintOnCurrentProcessor. 

 
Each SINTx present 8-bit field Vector which impact on the interrupt routine will be given control when the hypercall is 

executed with the parameters set by PortID (HvSignalEvent, HvPostMessage). 
 
SINTx can be specified explicitly (for example, message interception will always be controlled by SINT0 and placed in 

the first element of the page SIM), clearly (for timer message) or configured for a port that was created with the HvCreatePort 
hypercall, which has parameter PortTypeInfo. If the port type is HvPortTypeMessage or HvPortTypeEvent, the PortTypeInfo 
parameter is TargetSint, which contains SINT number that you want to bind the port to and the value can be from 1 to 15 (SINT0 
is reserved for messages from the hypervisor and cannot be specified as a TargetSint, when you create a port).  

Analyze of non-zeroed SINT values in root OS show that there are 3 (from 5) interrupt routine was used (KiHvInterrupt, 
KiVmbusInterrupt0, KiVmbusInterrupt1). Maybe KiVmbusInterrupt2 and KiVmbusInterrupt3 need to run the servers with a large 
number of logical processors (eg, 64), but, unfortunately, in a test environment, this version could not be verified. Also, in the 
values of the SINTx registers can be seen that the handler nt!KiHvInterrupt (vector 30) will be called as when generating an 
interrupt from the hypervisor and ports by the parameter when TargetSint is equal to 1. 

 
For example, consider the parameters of the ports that are created when you activate each of the services from the 

guest Hyper-V integration components. 
 
In the following table are sample values of some parameters of the hypervisor HvCreatePort: 
 



 

 

     
 
Root OS and guest OS interaction during work Integration Services occurs through the 5-th element of the array SIEF, 

I.e. the handler in root OS will call KiVmbusInterrupt1. 
 
The number of each port should be created equal to the previous and increased by 1. That is, If you disable all services 

integration and then re-enable them, the port numbers that are created for these services will be in the range from 0x22 to 0x27 
(the configuration is shown in Figure 11, in other cases, the port number are of course different). 

 
 You can see the port settings if you connect directly to the hypervisor debugger and trace the passed data to the handler 
of the hypervisor HvCreatePort or connect the kernel debugger and trace the parameters WinHvCreatePort in the driver 
winhvr.sys. 
 

The other ports are created when you power on guest OS (number of ports depends on the configuration of the guest 
operating system). The numbering is given by the order they are created if you enabled the virtual machine port in Windows 
Server 2012 R2 hardware by default.  

 
It is important to note the fact that the SIM0 slot in the guest and the parent OS is reserved for transmitting messages 

from the hypervisor. The format of these messages is documented in TLFS. When data is transferred over the remaining slots it 
will uses a different data format message. Vmbus messages is not documented, but the necessary information to work with them 
is present in LIS source codes. 

 
 
Some information about the vmbus messages processing by vmbusr.sys: 
 



 

 

 
 
vmbusr!ChReceiveChannelMessage handles such messages in root OS handles and analyzes the contents of the 4th slot 

SIM and determines code of vmbus messages. If it is 0 (CHANNELMSG_INVALID) or greater than 0x12, then the function returns 
an error code 0xC000000D (STATUS_INVALID_PARAMETER). Otherwise, the function processes the transmitted guest or root OS 
communication. For example, when the component Guest Services is enabled root OS sends a message 
CHANNELMSG_OFFERCHANNEL to the Guest OS, in response to the guest OS sends CHANNELMSG_GPADL_HEADER, then the 
root OS sends CHANNELMSG_GPADL_CREATED, gets back a message CHANNELMSG_OPENCHANNEL and finally sends a message 
CHANNELMSG_OPENCHANNEL_RESULT to the guest OS with the result code of the operation to create a channel. It is worth 
noting that prior to the treatment of each valid message function ChReceiveChannelMessage checks sent message 
(ChpValidateMessage), in particular on the subject of who is the sender (root-OS or guest OS) and for the minimum size of the 
message body. 

 
 
Let's see what the messages are exchanged between root OS and the guest OS. To do this, write a driver that replaces 

the address of an array of handlers HvlpInterruptCallback in the root operating system on their own handlers. 
 
The driver is written in Visual Studio 2013. It must be loaded into the root OS, for example, by OSRLoader. To send 

IOCTL-code it uses a simple program SendIOCTL.exe. After sending IOCTL-code INTERRUPT_CODE the driver starts to perform 
and processing the data sent by the hypervisor to slot SIM0. Unfortunately the variable HvlpInterruptCallback, which contains 
the address of an array of pointers for the message handlers, is not exported by windows kernel, so it is necessary to analyze the 
code of the detection exported by the kernel function HvlRegisterInterruptCallback. It does contain the necessary address of the 
array. Also, unfortunately, it will not simply work to call HvlRegisterInterruptCallback to register your message handler, as in the 
beginning of the function it goes to check the variable values of HvlpFlags. If the variable is equal to 1 (as it is the assigned value 
in the initial stages of loading the kernel), the function stops the execution and returns an error code 0xC00000BB 
(STATUS_NOT_SUPPORTED), respectively, to register the handler correctly, you will need to replace the handler with your own 
version of the HvlpInterruptCallback function. The Hyperv4 driver required activities are performed by RegisterInterrupt. 
Function RegisterInterrupt driver hyperv4 performs. 
 
int RegisterInterrupt() 
{ 
 UNICODE_STRING uniName; 
 PVOID pvHvlRegisterAddress = NULL; 
 PHYSICAL_ADDRESS pAdr = {0}; 
 ULONG i,ProcessorCount; 
 // We get the number of active processor cores 
 ProcessorCount = KeQueryActiveProcessorCount(NULL);  
 // search for addresses of the exported function HvlRegisterInterruptCallback 
 DbgLog("Active processor count",ProcessorCount); 
 RtlInitUnicodeString(&uniName, L"HvlRegisterInterruptCallback"); 
 pvHvlRegisterAddress = MmGetSystemRoutineAddress(&uniName); 
 if (pvHvlRegisterAddress == NULL){ 
  DbgPrintString("Cannot find HvlRegisterInterruptCallback!"); 
  return 0; 



 

 

 } 
 DbgLog16("HvlRegisterInterruptCallback address ",pvHvlRegisterAddress); 
// search for addresses Variable HvlpInterruptCallback 
FindHvlpInterruptCallback((unsigned char *)pvHvlRegisterAddress); 
// replacement of original manufacture handler to our handler 
ArchmHvlRegisterInterruptCallback((uintptr_t)&ArchmWinHvOnInterrupt, 
(uintptr_t)pvHvlpInterruptCallbackOrig, WIN_HV_ON_INTERRUPT_INDEX); 
ArchmHvlRegisterInterruptCallback((uintptr_t)&ArchXPartEnlightenedIsr, 
(uintptr_t)pvHvlpInterruptCallbackOrig, XPART_ENLIGHTENED_ISR0_INDEX); 
ArchmHvlRegisterInterruptCallback((uintptr_t)&ArchXPartEnlightenedIsr, 
(uintptr_t)pvHvlpInterruptCallbackOrig, XPART_ENLIGHTENED_ISR1_INDEX); 
ArchmHvlRegisterInterruptCallback((uintptr_t)&ArchXPartEnlightenedIsr, 
(uintptr_t)pvHvlpInterruptCallbackOrig, XPART_ENLIGHTENED_ISR2_INDEX); 
ArchmHvlRegisterInterruptCallback((uintptr_t)&ArchXPartEnlightenedIsr, 
(uintptr_t)pvHvlpInterruptCallbackOrig, XPART_ENLIGHTENED_ISR3_INDEX); 
//because SIMP value for all processor cores are different, you must obtain the addresses of all SIM, 
//make it possible to access the contents of the page using MmMapIoSpace. 
//and save the received virtual address of each page in the array for later 
for (i = 0; i < ProcessorCount; i++){ 
 KeSetSystemAffinityThreadEx(1i64 << i); 
 DbgLog("Current processor number", KeGetCurrentProcessorNumberEx(NULL)); 
 pAdr.QuadPart = ArchReadMsr(HV_X64_MSR_SIMP) & 0xFFFFFFFFFFFFF000; 
 pvSIMP[i] = MmMapIoSpace(pAdr, PAGE_SIZE, MmCached); 
 if (pvSIMP[i] == NULL){ 
  DbgPrintString("Error during pvSIMP MmMapIoSpace"); 
  return 1; 
 } 
 DbgLog16("pvSIMP[i] address", pvSIMP[i]); 
 pAdr.QuadPart = ArchReadMsr(HV_X64_MSR_SIEFP) & 0xFFFFFFFFFFFFF000; 
 pvSIEFP[i] = MmMapIoSpace(pAdr, PAGE_SIZE, MmCached); 
 if (pvSIEFP[i] == NULL){ 
  DbgPrintString("Error during pvSIEFP MmMapIoSpace"); 
  return 1; 
 } 
 DbgLog16("pvSIEFP address", pvSIEFP[i]); 
} 
return 0; 
} 

 
HvlpInterruptCallback after the execution of the function RegisterInterrupt (in case the replace all handlers at the same 

time) is as follows: 
 

kd> dps HvlpInterruptCallback 
fffff800`5a9ccc30 fffff800`4e9cc0a9 hyperv4!ArchmWinHvOnInterrupt  
fffff800`5a9ccc38 fffff800`4e9cc0e3 hyperv4!ArchXPartEnlightenedIsr  
fffff800`5a9ccc40 fffff800`4e9cc0e3 hyperv4!ArchXPartEnlightenedIsr  
fffff800`5a9ccc48 fffff800`4e9cc0e3 hyperv4!ArchXPartEnlightenedIsr  
fffff800`5a9ccc50 fffff800`4e9cc0e3 hyperv4!ArchXPartEnlightenedIsr 
fffff800`5a9ccc58 00000000`00000000 

(However, during experiments involving intensive virtual machine, it is better to replace one handler because replacing all at 
once leads to system instability) 
 
Replacement is similar to the original code: one handler for hypervisor and four handlers for processing messages from the 
vmbus. Procedures ArchmWinHvOnInterrupt and ArchXPartEnlightenedIsr save all registers on the stack and passed to the 
parse functions ParseHvMessage and ParseVmbusMessage respectively (mPUSHAD and mPOPAD macros that perform saving 
registers on the stack): 
 
ArchmWinHvOnInterrupt PROC 
 mPUSHAD  
 call ParseHvMessage 
 mPOPAD 
 mov rdx,pvWinHVOnInterruptOrig 
 jmp rdx  
ArchmWinHvOnInterrupt ENDP 
 
ArchXPartEnlightenedIsr PROC 
 mPUSHAD 
 call ParseVmbusMessage 
 mPOPAD 
 mov rdx,pvXPartEnlightenedIsrOrig 
 jmp rdx  
ArchXPartEnlightenedIsr ENDP 

 



 

 

After parsing, the control is passed to the original procedure WinHvOnInterrupt and XPartEnlightenedIsr. Parsing 
function is as follows: 

 
void ParseHvMessage() 
{ 
 PHV_MESSAGE phvMessage, phvMessage1; 
 // get the number of the active logical processors 
 ULONG uCurProcNum = KeGetCurrentProcessorNumberEx(NULL); 
 if (pvSIMP[uCurProcNum] != NULL){ 
  phvMessage = (PHV_MESSAGE)pvSIMP[uCurProcNum];  
 } else{ 
  DbgPrintString("pvSIMP is NULL"); 
  return; 
 } 
 // notification message is sent through the 1st SIM slot 
 phvMessage1 = (PHV_MESSAGE)((PUINT8)pvSIMP[uCurProcNum] + HV_MESSAGE_SIZE); //for SINT1 
 if (phvMessage1->Header.MessageType != 0){ 
  DbgPrintString("SINT1 interrupt"); 
 } 
 //depending on the type of message handlers call procedures 

//patterns for each message type are described in TLFS 
 switch (phvMessage->Header.MessageType) 
 { 
 case HvMessageTypeX64IoPortIntercept: 
  PrintIoPortInterceptMessage(phvMessage); 
  break; 
 case HvMessageTypeNone: 
  DbgPrintString("HvMessageTypeNone"); 
  break; 
 case HvMessageTypeX64MsrIntercept: 
  PrintMsrInterceptMessage(phvMessage); 
  break; 
 case HvMessageTypeX64CpuidIntercept: 
  PrintCpuidInterceptMessage(phvMessage); 
  break; 
 case HvMessageTypeX64ExceptionIntercept: 
  PrintExceptionInterceptMessage(phvMessage); 
  break; 
 default: 
  DbgLog("Unknown MessageType", phvMessage->Header.MessageType); 
  break; 
 } 
} 

 
The function gets the number of active logical processor, the address of the page SIM and reads the value of the zero slots SIM it 
will first analyze the message type phvMessage->Header.MessageType, because the message body for each type is different. In 
DbgView you can see the following picture: 
 

 
 
void ParseVmbusMessage(size_t index) 
{ 
 // get the number of the active logical processor 
 ULONG uCurProcNum = KeGetCurrentProcessorNumberEx(NULL); 
 PHV_MESSAGE phvMessage4; 
 PVMBUS_MESSAGE pvmbMessage; 
 if (pvSIMP[uCurProcNum] != NULL){ 
  // get the pointer to the 4-th slot SIM 
  phvMessage4 = (PHV_MESSAGE)((PUINT8)pvSIMP[uCurProcNum] + HV_MESSAGE_SIZE * 4); 
  //DbgLog("Hv interrupt vector index", index); 
  // If the message type is not HvMessageTypeNone the Payload contains the vmbus message 
  if (phvMessage4->Header.MessageType != HvMessageTypeNone){ 
   pvmbMessage = (PVMBUS_MESSAGE)phvMessage4->Payload; 
   // analyze the message and perform the vmbus type parsing 
   // structure the vmbus of messages are described in LIS 
   switch (pvmbMessage->vmbHeader.msgtype) 
   { 
   case CHANNELMSG_GPADL_HEADER: 
    ParseGpadlHeaderMessage(pvmbMessage); 
    break; 
   case CHANNELMSG_OPENCHANNEL: 



 

 

    ParseOpenChannelMessage(pvmbMessage); 
    break; 
   default: 
    DbgLog("Unhandled vmbus message", pvmbMessage->vmbHeader.msgtype); 
    break; 
   } 
  } 
 } 
 else{ 
  DbgPrintString("Error.pvSIMP is NULL"); 
  return; 
 }  
} 
  

The function gets the number of active logical processor, addresses of the SIM and get value of SIM4. For example, 
disassembled for the type of message and CHANNELMSG_OPENCHANNEL and CHANNELMSG_GPADL_HEADER, but in LIS you can 
see the format of all types of messages. Messages for vmbus usually generated when turn on/turn off the virtual machine, or one 
of the components of Integration Services. For example, when you enable the Data Exchange feature, in the debugger you will 
see the following message: 

 

 
  

Integration Services - Data Exchange 
Next, consider what image data is exchanged between the guest OS and his parents by the example of one of the 

Integration Services components - Data Exchange. This component allows the root OS to read data from a particular registry keys 
in the guest OS. (For information about the technology KvP again can be found in the msdn blog: http://goo.gl/R0U52l, 
http://goo.gl/8rVeNA). 

 
 To verify this in the guest OS we will create the key HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Virtual 
Machine\Guest key with a value of "KvPDataValue". 

 
 
To get the value of the key in the root OS the following PowerShell script has been used: 
 
$vm = Get-WmiObject -Namespace root\virtualization\v2 -Class Msvm_ComputerSystem -Filter {ElementName = 'Windows Server 2012 R2 

Gen1'} 
 

$vm.GetRelated("Msvm_KvpExchangeComponent").GuestExchangeItems | % { $GuestExchangeItemXml = 

([XML]$_).SelectSingleNode("/INSTANCE/PROPERTY[@NAME='Name']/VALUE[child::text() = 'KvPDataKey']") 
 

 if ($GuestExchangeItemXml -ne $null)  

 {  
 $GuestExchangeItemXml.SelectSingleNode("/INSTANCE/PROPERTY[@NAME='Data']/VALUE/child::text()").Value  

 }  

}  
  

The script will return the value of the key KvPDataKey::  
 

 
  
Note that even though that the script gets all the available set of values by using the  
$vm.GetRelated("Msvm_KvpExchangeComponent").GuestExchangeItems and only after it parses every object for key 
KvPDataKey. Accordingly the script will work only when the component Data Exchange is enabled in the virtual machine 
properties. 
 
When you activate a component Data Exchanger root OS through hypercall HvPostMessage guest OS sends a message with the 
code CHANNELMSG_OFFERCHANNEL: 
 
WINDBG>dd @rcx – rcx is the input parameter for the hypercall HvPostMessage 
00000080`002ff000 00000001 00000000 00000001 000000c4 
00000080`002ff010 00000001 00000000 a9a0f4e7 4d965a45 
00000080`002ff020 848a27b8 e6038c1e 242ff919 418007db 
00000080`002ff030 6cb82e9c 558c8cb6 00000000 00000000 
00000080`002ff040 00000000 00000000 00000011 00000004 

http://goo.gl/8rVeNA


 

 

  
You can draw attention to the fact that the data containing the GUID of the device is connected to the vmbus, as a child 

device: 
 

WINDBG>!devnode \Driver\vmbus 
Dumping IopRootDeviceNode (= 0xffffe0002bd2ed30) 
DevNode 0xffffe0002bd2ed30 for PDO 0xffffe0002bd2fe50 
WINDBG>!devnode 0xffffe0002bd2ed30 1 vmbus 
……………………………………………………………………………… 
DevNode 0xffffe0002c03cd30 for PDO 0xffffe0002c00db00 
 InstancePath is "VMBUS\{a9a0f4e7-5a45-4d96-b827-8a841e8c03e6}\{242ff919-07db-4180-9c2e-b86cb68c8c55}" 
 State = DeviceNodeStarted (0x308) 
 Previous State = DeviceNodeEnumerateCompletion (0x30d) 
……………………………………………………………………………… 
 
After this function is called in guest OS vmbus!InstanceDeviceControl The entire stack looks like this: 
 
WINDBG>kс 
Call Site 
nt!IoAllocateMdl 
vmbus!InstanceCloseChannel+0x22d (return to function without symbol name) 
vmbus!InstanceDeviceControl+0x118 
Wdf01000!FxIoQueue::DispatchRequestToDriver+0x1be 
Wdf01000!FxIoQueue::DispatchEvents+0x363 
Wdf01000!FxIoQueue::QueueRequest+0x8d 
Wdf01000!FxDevice::DispatchWithLock+0xb51 
vmbkmcl!KmclpSynchronousIoControl+0xa7 
vmbkmcl!KmclpClientOpenChannel+0x2a6 
vmbkmcl!KmclpClientFindVmbusAndUnlock+0x162 
vmbkmcl!VmbChannelEnable+0x231 
vmbus!PipeStartChannel+0x9e 
vmbus!PipeAccept+0x81 
vmbus!InstanceCreate+0x90 
Wdf01000!FxFileObjectFileCreate::Invoke+0x3f 
Wdf01000!FxPkgGeneral::OnCreate+0xb16 
Wdf01000!FxPkgGeneral::Dispatch+0x3d9 
Wdf01000!FxDevice::DispatchWithLock+0x7d8 
nt!IopParseDevice+0x7b3 
nt!ObpLookupObjectName+0x6d8 
nt!ObOpenObjectByName+0x1e3 
nt!IopCreateFile+0x372 
nt!NtCreateFile+0x78 
nt!KiSystemServiceCopyEnd+0x13 
ntdll!NtCreateFile+0xa 
KERNELBASE!CreateFileInternal+0x30a 
KERNELBASE!CreateFileW+0x66 
vmbuspipe!VmbusPipeClientOpenChannel+0x44 
icsvc!ICTransportVMBus::ClientNotification+0x60 
vmbuspipe!VmbusPipeClientEnumeratePipes+0x1ac 
icsvc!ICTransportVMBusClient::Open+0xe5 
icsvc!ICEndpoint::Connect+0x66 
icsvc!ICChild::Run+0x65 
icsvc!ICKvpExchangeChild::Run+0x189 
icsvc!ICChild::ICServiceWork+0x137 
icsvc!ICChild::ICServiceMain+0x8f 
svchost!ServiceStarter+0x358 
sechost!ScSvcctrlThreadA+0x25 
KERNEL32!BaseThreadInitThunk+0xd 
ntdll!RtlUserThreadStart+0x1d 
 
IoAllocateMdl is called with the size of the buffer to allocate 0xC000. The result is a structure formed by MDL: 
WINDBG>dt nt!_MDL @rax (в rax - ffffe001`51d0d0d0) 
 +0x000 Next : (null)  
 +0x008 Size : 0n144 
 +0x00a MdlFlags : 0n8 
 +0x00c AllocationProcessorNumber : 0 



 

 

 +0x00e Reserved : 0xffff 
 +0x010 Process : (null)  
 +0x018 MappedSystemVa : 0xffffe001`514e684c Void 
 +0x020 StartVa : 0xffffd000`bb193000 Void 
 +0x028 ByteCount : 0xc000 
 +0x02c ByteOffset : 0 
 
It then calls the MmProbeAndLockPages, then mdl structure is complemented by elements of the pfn. 
WINDBG>dq ffffe001`51d0d0d0 L20 
ffffe001`51d0d0d0 00000000`00000000 ffff0000`008a0090 
ffffe001`51d0d0e0 00000000`00000000 ffffe001`514e684c 
ffffe001`51d0d0f0 ffffd000`bb193000 00000000`0000c000 
ffffe001`51d0d100 00000000`0002d5bb 00000000`0002d5bc 
ffffe001`51d0d110 00000000`0002d5bd 00000000`0002d5be 
ffffe001`51d0d120 00000000`0002d5bf 00000000`0002d5c0 
ffffe001`51d0d130 00000000`0002d5c1 00000000`0002d5c2 
ffffe001`51d0d140 00000000`0002d5c3 00000000`0002d5c4 
ffffe001`51d0d150 00000000`0002d5c5 00000000`0002d5c6 
 
it then calls the vmbus!ChCreateGpadlFromNtmdl (2nd parameter is passed to the address of the MDL), which causes the vmbus! 
ChpCreateGpaRanges passing it MDL as the first parameter. It will then copy the elements of the PFN from the MDL in a separate 
buffer 

 
 
which will become the body of the message CHANNELMSG_GPADL_HEADER, which is sent from guest OS to root OS by calling 
the vmbus!ChSendMessage. In the hv!HvPostMessage (hvix64.exe) or at winhv!WinHvPostMessage you can see the message: 
 
WINDBG>dd @rcx L30 (rcx is input parameter for hv!HvPostMessage) 
00000081`39c96000 00000001 00030030 00000001 000000f0 
00000081`39c96010 00000008 00000000 00000008 0000000f 
00000081`39c96020 00010068 0000c000 00000000 0002d5bb 
00000081`39c96030 00000000 0002d5bc 00000000 0002d5bd 
00000081`39c96040 00000000 0002d5be 00000000 0002d5bf 
00000081`39c96050 00000000 0002d5c0 00000000 0002d5c1 
00000081`39c96060 00000000 0002d5c2 00000000 0002d5c3 
00000081`39c96070 00000000 0002d5c4 00000000 0002d5c5 
00000081`39c96080 00000000 0002d5c6 00000000 00000000 
 
The first 16 bytes - this is a common header message where 0xF0 - the size of the message body. VMBus-packet placed inside, 
header of that VMBus packet indicates the type of package - 8 (CHANNELMSG_GPADL_HEADER), rangecount is 1 which means 
that in one package together all the data have been transmitted. Next the root OS sends message 
CHANNELMSG_OPENCHANNEL_RESULT, then the guest OS sends CHANNELMSG_OPENCHANNEL. After that, the root OS fulfills 
the Work Items 
WINDBG>kc 
Call Site 
vmbusr!ChMapGpadlView 
vmbkmclr!KmclpServerOpenChannel 
vmbkmclr!KmclpWaitForActionWorkerRoutine 
nt!IopProcessWorkItem 
nt!ExpWorkerThread 
nt!PspSystemThreadStartup 
nt!KiStartSystemThread 
 
in the execution of which is called vmbusr!ChMapGpadlView, from which there comes a call of vmbusr!PkParseGpaRanges, which 
has a parameter - pointer of part of the message, which contains the size of the buffer 0xC000 and pfn, passing in 
CHANNELMSG_GPADL_HEADER message. Next call vmbusr!XPartLockChildPagesSynchronous-> vmbusr! XPartLockChildPages 
and then the function of the driver vid.sys (the name of the function is unknown, because there are no symbols for this driver), 
where as 2-th parameter is the block of pfn passed as message from the guest OS  
 



 

 

WINDBG>u @rip – the beginning of an unnamed function from vid.sys 
Vid+0x18000: 
fffff800`7d218000 xor r11d,r11d 
fffff800`7d218003 mov r10,rcx 
fffff800`7d218006 cmp r9d,1 
fffff800`7d21800a je Vid+0x1804a (fffff800`7d21804a) 
fffff800`7d21800c lea eax,[r11+1] 
fffff800`7d218010 mov rcx,qword ptr [rsp+28h] 
fffff800`7d218015 mov dword ptr [rcx+2Ch],eax 
fffff800`7d218018 mov rax,qword ptr [rsp+38h] 
WINDBG>dd poi(@rdx) 
ffffe001`ae827210 0000c000 00000000 0002d5bb 00000000 
ffffe001`ae827220 0002d5bc 00000000 0002d5bd 00000000 
ffffe001`ae827230 0002d5be 00000000 0002d5bf 00000000 
ffffe001`ae827240 0002d5c0 00000000 0002d5c1 00000000 
ffffe001`ae827250 0002d5c2 00000000 0002d5c3 00000000 
ffffe001`ae827260 0002d5c4 00000000 0002d5c5 00000000 
ffffe001`ae827270 0002d5c6 00000000 00065d63 00000000 
 
immediately after the return from the function in [rsp+30h] is a pointer to the new MDL: 

 
Next mdl contains the pfn of root OS. 

 
 
WINDBG>dd 0xffffe001`ae827180 
ffffe001`ae827180 00000000 00000000 00020090 ffffe001 
ffffe001`ae827190 ab49f900 ffffe001 00000000 00000000 
ffffe001`ae8271a0 00000000 00000000 0000c000 00000000 
ffffe001`ae8271b0 001367bb 00000000 001367bc 00000000 
ffffe001`ae8271c0 001367bd 00000000 001367be 00000000 
ffffe001`ae8271d0 001367bf 00000000 001367c0 00000000 
ffffe001`ae8271e0 001367c1 00000000 001367c2 00000000 
ffffe001`ae8271f0 001367c3 00000000 001367c4 00000000 
 
after this the root OS sends CHANNELMSG_OPENCHANNEL_RESULT message. On that the process activation components Data 
Exchange is finished. Result is a creation of shared-buffer, visible for the guest and root OS. You can verify this by running a record 
arbitrary bytes in the buffer inside the guest OS, for example by using the command: 
WINDBG>!ed 2d5bb000 aaaaaaaa 
WINDBG>!db 2d5bb000 
#2d5bb000 aa aa aa aa 10 19 00 
 
in the root OS you can see the page content, of the pfn returned function of the driver vid.sys: 
WINDBG>!db 1367bb000 
#1367bb000 aa aa aa aa 10 19 
As you can see that the values match, so it's really the same physical memory area, which guest and the root OS uses. 
 



 

 

Recall that in the previous stages we define that when the feature Data Exchange is activated and it creates a port of 
the type HvPortTypeEvent with TargetSint = 5. Accordingly all operations with this port in the root OS will handle by 
KiVmbusInterrupt1, from which it calls vmbusr!XPartEnlightenedIsr, which calls KeInsertQueueDpc with the DPC, containing: 

 
WINDBG>dt _KDPC @rcx 
PSHED!_KDPC 
 +0x000 TargetInfoAsUlong : 0x113 
 +0x000 Type : 0x13 '' 
 +0x001 Importance : 0x1 '' 
 +0x002 Number : 0 
 +0x008 DpcListEntry : _SINGLE_LIST_ENTRY 
 +0x010 ProcessorHistory : 1 
 +0x018 DeferredRoutine : 0xfffff800`08003de0 void vmbusr!ParentRingInterruptDpc+0 
 +0x020 DeferredContext : 0xfffff800`080130e0 Void (vmbusr!XPartLibContextStatic) 
 +0x028 SystemArgument1 : (null)  
 +0x030 SystemArgument2 : (null)  
 +0x038 DpcData : (null) 
 
vmbusr!ParentRingInterruptDpc calls vmbusr!PkGetReceiveBuffer: 
WINDBG>k 
Child-SP RetAddr Call Site 
fffff800`fcc1ea38 fffff800`6cdc440c vmbusr!PkGetReceiveBuffer+0x2c 
fffff800`fcc1ea40 fffff800`6cdc41a7 vmbusr!PipeTryReadSingle+0x3c 
fffff800`fcc1eaa0 fffff800`6cdc4037 vmbusr!PipeProcessDeferredReadWrite+0xe7 
fffff800`fcc1eaf0 fffff800`6c96535e vmbusr!PipeEvtChannelSignalArrived+0x63 
fffff800`fcc1eb30 fffff800`6cdc4e3d vmbkmclr!KmclpVmbusManualIsr+0x16 
fffff800`fcc1eb60 fffff800`fb2d31e0 vmbusr!ParentRingInterruptDpc+0x5d 

 
Put a breakpoint on the function vmbusr!PkGetReceiveBuffer and run our powershell script. The breakpoint will trigger 

and you will see that the function is passed with a structure (a pointer to the rcx) in rcx +18 is a pointer to the memory block: 
 

WINDBG>? poi(@rcx+18) 
Evaluate expression: -52770386006016 = ffffd001`6fe33000 
 
WINDBG>!pte ffffd001`6fe33000 
 VA ffffd0016fe33000 
PXE at FFFFF6FB7DBEDD00 PPE at FFFFF6FB7DBA0028 PDE at FFFFF6FB74005BF8 PTE at FFFFF6E800B7F198 
contains 0000000000225863 contains 00000000003B7863 contains 000000010FB12863 contains 80000001367BB963 
pfn 225 ---DA--KWEV pfn 3b7 ---DA--KWEV pfn 10fb12 ---DA--KWEV pfn 1367bb -G-DA--KW-V 
 
WINDBG>r cr3 
cr3=00000000001ab000 
 
WINDBG>!vtop 1ab000 ffffd0016fe33000 
Amd64VtoP: Virt ffffd001`6fe33000, pagedir 1ab000 
Amd64VtoP: PML4E 1abd00 
Amd64VtoP: PDPE 225028 
Amd64VtoP: PDE 3b7bf8 
Amd64VtoP: PTE 00000001`0fb12198 
Amd64VtoP: Mapped phys 00000001`367bb000 
Virtual address ffffd0016fe33000 translates to physical address 1367bb000. 
 
If you view this memory area the guest OS options are visible. 
 
WINDBG> dc ffffd0016fe33000 L1000 
………………………………………………………………………………………………………………… 
ffffd001`6fe35b30 0065004e 00770074 0072006f 0041006b N.e.t.w.o.r.k.A. 
ffffd001`6fe35b40 00640064 00650072 00730073 00500049 d.d.r.e.s.s.I.P. 
ffffd001`6fe35b50 00340076 00000000 00000000 00000000 v.4............. 
………………………………………………………………………………………………………………… 
ffffd001`6fe35d20 00000000 00000000 00000000 00000000 ................ 
ffffd001`6fe35d30 00300031 0030002e 0030002e 0033002e 1.0...0...0...3. 
ffffd001`6fe35d40 00000000 00000000 00000000 00000000 ................ 
 
WINDBG>!pte ffffd001`6fe35b30 
 VA ffffd0016fe35b30 



 

 

PXE at FFFFF6FB7DBEDD00 PPE at FFFFF6FB7DBA0028 PDE at FFFFF6FB74005BF8 PTE at FFFFF6E800B7F1A8 
contains 0000000000225863 contains 00000000003B7863 contains 000000010FB12863 contains 80000001367BD963 
pfn 225 ---DA--KWEV pfn 3b7 ---DA--KWEV pfn 10fb12 ---DA--KWEV pfn 1367bd -G-DA--KW-V 
 
pfn 1367bd – is a pfn 3-th page of the converted MDL. 
 

Also the same function in rdx is a pointer that contains the offset of the starting address shared with the guest OS pages 
(in the example it is 4448h) that you want to read: 
 
vmbusr!PkGetReceiveBuffer+0x4e: 

mov r8,r10 (in r10d was previously loaded displacement of rdx) 
add r8,qword ptr [rcx+20h] – the rcx+20 contains a pointer to one of the guest OS pages 

 
WINDBG>!pte @r8 
VA ffffd0016ff22448 
PXE at FFFFF6FB7DBEDD00 PPE at FFFFF6FB7DBA0028 PDE at FFFFF6FB74005BF8 PTE at FFFFF6E800B7F910 
contains 0000000000225863 contains 00000000003B7863 contains 000000010FB12863 contains 80000001367C0963 
pfn 225 ---DA--KWEV pfn 3b7 ---DA--KWEV pfn 10fb12 ---DA--KWEV pfn 1367c0 -G-DA--KW-V 
 
If you set a breakpoint on the instruction add r8,qword ptr [rcx+20h] then follow through several iterations in r8 you can see: 
 
WINDBG>dc @r8 
ffffd001`6ff21d10 00020006 00000148 00000000 00000000 ....H........... 
ffffd001`6ff21d20 00000001 00000a28 00000003 00050002 ....(........... - Transmission Unit 
ffffd001`6ff21d30 0a140000 00000000 00000515 00000103 ................ 
ffffd001`6ff21d40 00000004 00000001 00000016 0000001a ................ 
ffffd001`6ff21d50 0076004b 00440050 00740061 004b0061 K.v.P.D.a.t.a.K. 
ffffd001`6ff21d60 00790065 00000000 00000000 00000000 e.y............. 
ffffd001`6ff21d70 00000000 00000000 00000000 00000000 ................ 
ffffd001`6ff21d80 00000000 00000000 00000000 00000000 ................ 
…………………………………………………………………………………………………………………. 
ffffd001`6ff21f40 00000000 00000000 00000000 00000000 ................ 
ffffd001`6ff21f50 0076004b 00440050 00740061 00560061 K.v.P.D.a.t.a.V. 
ffffd001`6ff21f60 006c0061 00650075 00000000 00000000 a.l.u.e......... 
ffffd001`6ff21f70 00000000 00000000 00000000 00000000 ................ 
 
WINDBG>!pte ffffd001`6ff21f50 
 VA ffffd0016ff21f50 
PXE at FFFFF6FB7DBEDD00 PPE at FFFFF6FB7DBA0028 PDE at FFFFF6FB74005BF8 PTE at FFFFF6E800B7F908 
contains 0000000000225863 contains 00000000003B7863 contains 000000010FB12863 contains 80000001367BF963 
pfn 225 ---DA--KWEV pfn 3b7 ---DA--KWEV pfn 10fb12 ---DA--KWEV pfn 1367bf -G-DA--KW-V 
 
then after the completion of the PkGetReceiveBuffer function PipeTryReadSingle copies the data from the shared-buffer using  
memmove. The block size (in this case A28) is specified directly in the block, but if the number is greater than 4000h the copying 
is not performed. Thus it is seen that the exchange of data between the root OS and the guest OS uses a shared buffer, and the 
interface of hypervisor is used only to notify the root OS that the data must be read from this buffer. In principle, the same 
operation could be done by sending multiple messages using winhv!HvPostMessage, but this would lead to a significant 
performance degradation. 

2.The use of the interception interface 
Configure a hypervisor to send notification to root OS in case if one of the guest OS executes cpuid with the 0x11114444. For this 
hyper-v provides an interface in the form of an hypercall HvInstallIntercept. There is function  SetupIntercept In hyperv4 driver, 
which takes a list of identifiers of all active guest operating systems and calls for each one WinHvInstallIntercept. 
int SetupIntercept() 
{ 
 HV_INTERCEPT_DESCRIPTOR Descriptor; 
 HV_INTERCEPT_PARAMETERS Parameters = {0}; 
 HV_STATUS hvStatus = 0; 
 HV_PARTITION_ID PartID = 0x0, NextPartID = 0; 
 // If the instructions in rax contains the cpuid instruction the value 0x11114444 will be passed,
 // the hypervisor will intercept and send the message to the parent section to process the result
 DbgPrintString("SetupInterception was called"); 
 Parameters.CpuidIndex = 0x11114444; 
 Descriptor.Type = HvInterceptTypeX64Cpuid; 
 Descriptor.Parameters = Parameters; 
 hvStatus = WinHvGetPartitionId(&PartID); 
 do{ 
 hvStatus = WinHvGetNextChildPartition(PartID, NextPartID, &NextPartID); 
 if (NextPartID != 0){ 



 

 

  DbgLog("Child partition id", NextPartID); 
  hvStatus = WinHvInstallIntercept(NextPartID, HV_INTERCEPT_ACCESS_MASK_EXECUTE, &Descriptor); 
  DbgLog("hvstatus of WinHvInstallIntercept = ", hvStatus); 
 } 
 } while ((NextPartID != HV_PARTITION_ID_INVALID) && (hvStatus == 0)); 
 return 0; 
} 

 
Also change the PrintCpuidInterceptMessage so that it is in the case, if the guest OS EAX register (or RAX, if the code 

executes instructions CPUID is performed in longmode) contains the number 0x11114444, it is recorded in the field 
DefaultResultRdx  of structure HV_X64_CPUID_INTERCEPT_MESSAGE which is located in the zero slot SIM with, the value of 
0x12345678: 

 
void PrintCpuidInterceptMessage(PHV_MESSAGE hvMessage) 
{ 
 PHV_X64_CPUID_INTERCEPT_MESSAGE phvCPUID = (PHV_X64_CPUID_INTERCEPT_MESSAGE)hvMessage->Payload; 
 DbgLog(" phvCPUID->DefaultResultRax", phvCPUID->DefaultResultRax); 
 DbgLog(" phvCPUID->DefaultResultRbx", phvCPUID->DefaultResultRbx); 
 DbgLog(" phvCPUID->DefaultResultRcx", phvCPUID->DefaultResultRcx); 
 DbgLog(" phvCPUID->DefaultResultRdx", phvCPUID->DefaultResultRdx); 
 if (phvCPUID->Rax == 0x11114444){ 
  phvCPUID->DefaultResultRdx = 0x12345678; 
  DbgLog16(" phvCPUID->Header.Rip", phvCPUID->Header.Rip); 
  DbgPrintString(" Interception was handled"); 
 } 
} 

 
To check the guest operating system to run the test utility, which causes cpuid with eax, equal to 0x11114444. Before 

installing the utility displays for the result of the interception: 

 
After activating the capture result are:  

 
With this in WINDOWS root it will display a message 

 
 
Immediately notice that this trick will take place only if the root OS does not find interceptions for the specified 

conditions and If the root OS previously didn´t find interceptions for the specified conditions. In this case, after the hyperv4 driver 
will replace the value and control is passed back to the original WinHvOnInterrupt, which will cause the processing of driver 
vid.sys (his function is the fourth parameter to winhvr! WinHvCreatePartition, called in the root operating system to create the 
child partition when the virtual machine loads) that will lead to a different result. In our case is such a handler of course not 
installed, the hypervisor has been analysed data in the SIM0 and fixed the result of the CPUID instruction. 

 
In conclusion, I will say that the article is rather a review demonstrating some virtualization features and components 

that examples Microsoft, however I hope these examples will help you get a better understanding for these components and 
allows you for a more detailed analysis of their safety. 
 

Gerhart 


