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Software, used in article (operation systems have August 2019 patches):
Windows 10, build 1903 x64

Windows Server 2019

Windows Server 2016

WinDBG Preview

Visual Studio 2019

Process Hacker

PyKd plugin for WinDBG

Testing lab works on Intel-based PC. Therefore, Intel specific Hyper-V terms: hvix64.exe, vicall instruction, etc will be used in article context.
Terms and definitions:

¢ WDAG — Windows Defender Application Guard;

¢ Full VM (virtual machine) — virtual server, which was created in Hyper-V manager. Differs from WDAG container, Windows Sandbox,
docker in Hyper-V isolation mode;

¢ Root OS — operation system, where server part of Hyper-V is installed;

¢ Guest OS — operation system, which works in Hyper-V emulation context, uses virtual devices, which is presented by Hyper-V
infrastructure. It can be Full VM and Hyper-V containers;

e TLFS — Hypervisor Top-Level Functional Specification 5.0;

¢ GPA (guest physical address) — Guest OS physical memory address;

e SPA (system physical address) — Root OS physical memory address;

e Hypercall — hypervisor service function, which is called by vimcall execution with specifying hypercall number;

¢ PFN - page frame number.

Source of hvmm.sys driver on github.com:

https://github.com/gerharto1/LiveCloudKd/tree/master/hvmm

Python-script for GPAR and MBlock objects parsing
https://github.com/gerharto1/Hyper-V-Internals/blob/master/ParsePrtnStructure.py

Intro

Long time ago I didn’t write anything in my blogpost. It doesn’t mean, that I stopped Hyper-V research. Since Microsoft issued WDAG in
Windows 10, build 1803, I started investigate it, but got much problems. First, it was impossible to attach to container, because it doesn’t
support it. WDAG is isolated environment, and bededit options for debugging can’t be configured. More then, every configuration option is
reset after rebooting. Sysinternals LiveKD supports Hyper-V attaching, but compatibility was broken in latest OS versions, more then, guest OS
memory reading hypercall HvReadGpa, which is used by LiveKd, is not compatible with containers.

It was stalemate, but it turned out, that Matt Suiche (@msuiche), founder of Comae Technologies, shared LiveCloudKd source code for me
(many thanks to him!). That program allows attach WinDBG to guest OS, using vid.dll API for reading guest OS memory. But next problem is
vid.dll execution blocked by Microsoft: functions from vid.dll can be executed only from vmwp.exe process context, otherwise it will be blocked
by vid.sys driver, which compared _ EPROCESS object of function’s usermode caller process with parent vmwp.exe _ EPROCESS. Additionally,
some of original LiveCloudKd techniques stopped working in Windows 10. I had to update it too.

Working on adaptation of LiveCloudKd can help me understand Hyper-V guest memory internals better. Soon Matt shared sources on github

(https://github.com/comaeio/LiveCloudKd).

In 2017, Andrea Allievi made Hyper-V memory management architecture presentation (www.andrea-

information from presentation to real vid.sys code. I believe it was because at the moment of presentation, Hyper-V symbols information has
not yet been published.

Btw, thanks to Andrea to pointing me to some names of vid.sys structures.

Additionally, need say thanks to Microsoft company, which decided to publish symbols for many Hyper-V modules
(https://docs.microsoft.com/en-us/virtualization/community/team-blog/2018/20180425-hyper-v-symbols-for-debugging). Without them it
was hard to analyze memory-managed vid functions.

First, I planned wrote article about Hyper-V containers, but I made research log above 150 pages (6 from 9 font), but still don’t understand
whole working scheme. After that I decided to make a list of Hyper-V container components (then, it was extended to all Hyper-V components
cheat sheet — no much files were need to add. Containers and Hyper-V has very similar components base).
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After that, I understood, that it has much components and too big for 1 article description. Therefore, I decided to highlighted more interesting
things in separate article about guest OS memory structures.

Why guest OS only? Hyper-V kernel hvix64.exe already has memory description in TLFS docs, and de facto it involved in memory operation
only in allocation\deallocation stage. Read\write memory guest OS made independently of hypervisor. Yes, of course hypervisor make memory
access attribution\isolates guest OS memory from root OS, and other OSes, but it made by hardware feature like EPT and don’t need evolve
hypervisor on every memory reading\writing operation.

I describe memory access to Full VM, WDAG, Windows Sandbox and shortly Docker containers. During research hvmm driver was created.
Main function of it — provide interface for reading guest OS memory from root OS without access to vid.sys, hvix64.exe APIL. That driver was
integrated to LiveCloudKd project.

Detailed description of Hyper-V internals we will see in part 2 of Windows Internals book, 7th, writing by Andrea Allievi. But while book under
develop, you can read shot description of Hyper-V guest OS memory structures in this article :)

Let’s beginning.

Direct memory access to Full VM and Hyper-V containers

Vmwp.exe is the main process, that controls guest OS execution and provide device emulation. It is launched by vimcompute.exe, which is
managed by vmms.exe for Full VM, hvsimgr.exe for WDAG, WindowsSanbox.exe for Windows Sandbox, docker.exe for docker containers.
When starting, the vmwp.exe process accesses to the hypervisor interfaces (hypercalls) through the vid.dll interface. I got hypercall usage
statistic for Windows Server 2019 VM, Docker container in Hyper-V isolation mode (nanoserver image: 1809) and WDAG container. The
WDAG container generates too many hypercalls, so due some delays, caused by the debugger writing results, the container immediately started
to turn off after being turned on (WDAG-manage application hvsimgr.exe controls execution timeouts of some procedures), and therefore the
WDAG results contains summary indicator (I want to try dtrace, relatively recently developed under Windows, to collect such statistics - in
theory, it should reduce the cost of recording the collected data and remove hvsimgr.exe timeout limitations). Separately there is recorded
shutdown statistics, so that the approximate order can be estimated. In comparing to Full VM, it is quite large:
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What categories of hypercalls can be distinguished from this calling statistics? Partition creation, configuring its properties, creating virtual
processors and virtual ports (use to send signals, messages), setting interceptions, and various hypercalls for memory management.

See to winhvr.sys!WinHvMapGpaPagesFromMbpArrayScanLargePages function. Rdx contains page number, rsi - size (in pages).

When we start Windows Server 2019 with 1500 Mb of RAM, we got:

1st call rdx=0000000000000000 rsi=000000000005dc00

2nd call rdx=00000000000f8000 rsi=0000000000000800

3rd call rdx=00000000001fff800 rsi=0000000000000800

When we start Windows Server 2019 with 2300 Mb of RAM, we got:
1st call: rdx=0000000000000000 1rsi=000000000008fco0

2nd call: rdx=00000000000f8000 rsi=0000000000000800

3rd call: rdx=0000000000fff800 rsi=000000000000024a

Call stack:

1st call 2nd and 3rd calls
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00 winhvr!'WinHvMapGpaPagesFromMbpArrayScanLargePages
01 Vid!lVsmmHvpMapGpasFromMbpArray

02 Vid!VsmmHvpMapGpasFromMemoryBlockRange

03 Vid!lVsmmHvMapGpasFromMemoryBlock

04 Vid!'VsmmAdjustGpaSpaceForMemoryBlockRange

05 Vid!lVsmmCreateMemoryBlockGpaRange

06 Vid!VidloControlPartition

07 Vid!VidloControlDispatch

08 Vid!VidloControlPreProcess

0d ntllofCallDriver

Oe ntllopSynchronousServiceTail

Of ntllopXxxControlFile

10 nt!NtDeviceloControlFile

11 nt!KiSystemServiceCopyEnd

12 ntdll!NtDeviceloControlFile

13 vid_7ffb4de20000!VidCreateMemoryBlockGpaRange
14 vmwp!GpaRangeMbBacked::Initialize

15 vmwp!MemoryManager::CreateGpaRangelnternal
16 vmwp!MemoryManager::CreateMemoryBlock

17 vmwp!MemoryManager::CreateRamMemoryBlocks
18 vmwp!MemoryManager::CreateRam

19 vmwp!VirtualMachine::ConstructGuestRam

1a vmwp!WorkerTaskStarting::RunCleanStartSteps

1b vmwp!WorkerTaskStarting::RunTask

1c

vmwp!WorkerAsyncTask<VmPerf::Vmwp::StartingTask>::Execute

1d vmwp!VirtualMachine::DoStateChangeTask
1e vmwp!VirtualMachine::Startinternal

# Call Site

00 winhvr!'WinHvMapGpaPagesFromMbpArrayScanLargePages
01 Vid!'VsmmHvpMapGpasFromMbpArray

02 Vid!lVsmmHvpMapGpasFromMemoryBlockRange

03 Vid!VsmmHvMapGpasFromMemoryBlock

04 Vid!'VsmmAdjustGpaSpaceForMemoryBlockRange

05 Vid!VsmmCreateMemoryBlockGpaRange

06 Vid!VidloControlPartition

07 Vid!VidloControlDispatch

08 Vid!VidloControlPreProcess

0d nt!lofCallDriver

Oe ntllopSynchronousServiceTail

0f nt!llopXxxControlFile

10 ntINtDeviceloControlFile

11 nt!KiSystemServiceCopyEnd

12 ntdll!NtDeviceloControlFile

13 vid_7ffb4de20000!VidCreateMemoryBlockGpaRange

14 vmwp!MemoryManager::CreateMemoryBlockGpaRange
15 vmwp!VmbComGpaRange::VmbComGpaRange

16

vmwp!Vml::VmComMultilnstanceObject<VmbComGpaRange>::Createlnstan:

17 vmwp!Vml::CreateComObject<VmbComGpaRange,IMemoryManager

18 vmwp!VmbComMemoryBlock::CreateGpaRange

19 vmuidevices!VideoSynthDevice::SetupVramGpaRange

1a vmuidevices!VideoSynthDevice::SynthVidOnVramLocation
1b vmuidevices!VideoSynthDevice::OnMessageReceived

1c vmuidevices!VMBusPipelO::OnReadCompletion

1d vmuidevices!VMBusPipelO::ProcessCompletionList

1e vmuidevices!VMBusPipelO::HandleCompletions

1f vmuidevices!VMBusPipelO::OnCompletion

The last memory block is mapped memory of video adapter. A one-page-size block is used for an ACPI devices.

eocoeeso
20200020 <No

Among other things driver hvmm.sys is needed to remove vmwp.exe protection, that prevent dll injection to that process. That driver works
with partition handle with Prtn-signature (VM_PROCESS_CONTEXT), but there is second type, that supporting by vid.sys - EXO-partitions.
EXO-partitions can be created using WinHv Platform API Library (https://docs.microsoft.com/en-us/virtualization/api/hypervisor-
platform/hypervisor-platform), which allows third-party developers to make their virtualization solutions compatible with Hyper-V and run it
simultaneously with native Hyper-V VMs. Currently VirtualBox, Qemu, Bochs (f.e. in applepie implementation) have this supporting. VMware,
one year after the appearance of these APIs in Windows 1803, finally added support to its VMware Workstation product too. Probably, a new
assembly of VMware will be released after the release of Windows 10, build 1909 (19H2).

However, it is still possible to use the vid.dll interface without a driver in Windows Server 2016 and earlier. API execution lock is missing in
vid.sys in that OS, and driver hvmm.sys is not needed in that environment. But WDAG and Windows Sandbox containers are presenting in
Windows 10 only, where API is locked.

What structures will be needed to work with Guest OS memory? I tried to visualize them in a diagram. In the future, while reading the article, it
should become clearly, how they are using.
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Objects:
¢ Partition handle (VM_PROCESS_CONTEXT);
¢ GPAR-handle (GPAR - Guest physical Address Range);
e Array of GPAR elements (GPAR Array);
e Array of MBlock-objects (MBlock Array. MBlock — memory block GPA range);
¢ GPAR-object (GPAR_OBJECT);
¢ MBlock-object (MEMORY_BLOCK).

Partition handle is the main object, which is used by hvmm driver. When user mode section of partition handle is created, its kernel mode part
contains all the necessary information about the created partition. The search algorithm for the user mode component hasn’t changed since
Windows Server 2008 R2, and this component can be obtained by enumeration of handles, opened by the vmwp.exe process. For this, find all
open file descriptors with the names like \Device\000000 and try to get partition name.

If the name can be obtained, it means, that we found a valid partition handle. In my practice, there are 3 similar objects for each Full VM or
container. If we pass the obtained values to the kernel function nt!ObReferenceObjectByHandle, then in two cases it returns NULL, that means
objects are invalid. For the current descriptor, we get the pointer to the partition handle.

Yes, object pointers offsets inside partition handle are fixed and differ for each version of Windows. But for same version of Windows they
aren’t changed, so the method is quite reliable.

Partition handle contains fields, that point to an array of MBlock objects (initialized in

vid.sys!VsmmMemoryBlockpInitialize) and an array of GPAR objects (initialized in vid.sys!VsmmGpaRangeplnitialize).

By the way, you do not need to confuse the partition handle with the Windows 10 memory partition structure, which !partition WinDBG
command displays. This is the _MI_PARTITION structure, which contains basic information about current state of the operating system
memory. This object is created without an active hypervisor (or active — no matter).

You can read more about it in the 1st part of Windows Internals book (7th edition). I couldn’t find

. . . . o: kd> lpartition N
that information in MSDN (current Microsoft Docs). partitions féstsanaasiiocs hunorybartitlne
. . . . i ject @ (
Containers and Full VM have different accessing memory methods, so let's look at memory reading _Mx_;muéﬁ‘a e
examples for both. Let's start with Full VM based on Windows Server 2019. TotaliugeTospacenanges: 0 65
. AvailablePages: 8n969332 ( 3 Gb 714 Mb 464 Kb)
Full VM memory reading st Ivromarion & srerasiseceseoas
. . . . . TotalP: EntireNode: ©ox13fe64
LiveCloudKd application passes the request to the driver for reading guest OS memory block. The e .
data, required for the request, is packed into the GPA_INFO structure. This structure contains start oo a8 4E
. . . . . .. axB 80472 ( 314 Mb 352 Kb) e (o)
memory address, number of bytes to read and service information about virtual machine partition EhETIR  (GIRED)
(PID vmwp, partition id). 2 T Yooe TvramaTion & citeisasssoeres.
TctalPagzsi:::::Nodz. ] free
168 8 (e) e (o)
2m8 8 (8) e (o)
64KB e (@) e (@)
axs e (@) e (@)
Node Free Memory: (e)
InUse Memory: (e)
TotalNodeMemory: (e)
= Gpalnfo _GPA_INFO
Partitioninfo _PARTITION_INFO
StartPage 0x8058000 unsigned _int64
BytesCount 0x1000 unsigned __int64

First, get partition handle. To do this, just call the nt!ObReferenceObjectByHandle function with the passed descriptor.
Type of getting object is FILE_OBJECT. To gain access to the body of the descriptor, you must get
a pointer to FsContext.

Status = ObReferenceObjectByHandle(

*IoFileObjectType,

elMode,
&objVmPartition,

pPartitionHandle = (PV XT) AR)objVmPartition->FsContext - 1);

Beginning part of partition handle looks like:

5/17



3: kd> dc FFFFCE@SAE@3E@0Q L30
ffffceos™ 6e747250 Prtn.
ffffce08 ac03e010 0480001c 00OOOGP00 ©OOOOPEP0 0BBEEE00 ..
ffffced8 ac03e020 00000001
ffffceos®
ffffcees®
ffffceos’ 00420048
ffffce08 ae@3e06@ adb93230 ffffce08 02000014 ©0000000
ffffce08 ae@3e070 ae03e078 ffffced@8 00690057 ©032006e
ffffced8 ac03e080 00310030 002d8039 00320030 080000

(objVmPartition->Fs
pPartitionHandle ( EX R VmPartition->FsContext - H

(pPartitionHandl

idGetContain o tionHandle,

The first ox278 bytes contain section signature, the name and its identifier. The size of structure is not small (0x3EFo for Windows Server
2019) and it is different for different operating systems. The exact size of partition handle can be found in vid.sys!VidCreatePartition (by the
amount of memory allocated for it). We will not need it in driver.

When we get partition handle type (VmType), we can perform one of two procedures for memory blocks reading. There are actually quite a lot
of possible VmType values, and moreover, they differ for different versions of operating systems. For example, VmType for Full VM in
Windows 10 and Windows Server 2019 have different values. Not all of them have been investigated (especially for operating systems such as
Linux, because WinDBG, that launched by LiveCloudKd, doesn’t work with them). But finally partitions of virtual machines were divided into
two categories: container’s partitions and Full VM partitions.

The hvmm.sys!VidGetFullVmMemoryBlock function at the input receives a section descriptor, a buffer in which to write the received data, the
size of the buffer in bytes and the GPA of the virtual machine.

BOOLEAN VidGetFullVmMemoryBlock(PVM_PROCESS_CONTEXT pPartitionHandle, PCHAR pBuffer, ULONG len, ULONG64 GPA)

GPA - it is page number, which is calculated: GPA = Gpalnfo.StartAddress / PAGE_SIZE;

The start address should be aligned on the page boundary, if the hvmm driver function is called directly (LiveCloudKdSdk prepared usermode
buffer for that).

Next, we need to find GPAR object, that describes the requested GPA. Each GPA is included in the memory block, previously allocated by the
hypervisor, and this memory block is described by the GPAR object. Fields GpalndexStart and GpalndexEnd are located, respectively, at the
offsets 0x100 and 0x108 of the GPAR objects. You can understand whether the GPAR object describes the GPA or not, by the value of these
fields. For example:

This GPAR object control GPA from o to 0x8fbff. b e serams esssem

FFFFdBe8" 20ad2960 72617047 20000RE0 0PAAEEAL 2EEEEREO
Ffffd8es’ 20ad2970 ©PO6EEE1 BEEEERAD 20ad2978 fFFfdBe8 ..

GPAR objects count in Full VM are much smaller than in containers. For example, FEerdes 20242583 20242975 FFFEdEa3 0aA0GIL3 SoRaoseR )
. . . £ffd " 20ad299¢ .
Generation 2 Full VM has 3-4 GPAR objects, containers have about 780. Then guest OS £4FFd508" 20002020 €9505210 FFFFF302 20002968 TFFrAB0S ||

ff£d8es" 20ad29be

1 3 * ffffdses 20ad29c0 ©0000000 20000000 e9571cR0 fffffse2 ..
has more memory, then more blocks it allocates with HvMapGpaPages* hypercalls and, Frirdson' oadzod _soedaaso rerrdaen ooareiss suesnos
correspondingly, there are greater numbers of GPAR objects. The maximum range of S e .

. . ffffdses” 2ead2a7e ©€o08fbff 00000000 ©000EO5 ©0000000
GPAs, described by GPAR object, that I met, was 0x96000 pages. ¢ fdsas” 208d2a80 seoe1611

fffdses’ 20ad2age
f *20ad2aae
* 20ad2abe
d8@8" 20ad2ace ..
Fffdses’ 20ad2ade 23a4scfe ffffdses 00eoeeo0 ¢e00000e ..

Let's get back to our driver. We can find GPAR object using
hvmm.sys!VidGetGparObjectForGpa function. Partition handle and GPA are passed to
the function. How does it work? As described above, each partition handle has a pointer
to a GPA block descriptor. This is a structure, which, among other things, contains a pointer to the partition handle itself, a pointer to array
with pointers to GPAR objects, and the count of elements in the array of GPAR objects (see the diagram of the relationship of structures above).

nHan
parArr

Inknown@1;
ountInGparA
DLE,

cGparSignature[
Unknown@1[exF8]
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pGparBlockHandle = ->pGparBlockHandle;

if (pGparBlockHandle == @)

pGparBlockHandle = ->pGparBlockHandle2H1 ;
if (pGparBlockHand
KDbgPrintString(” ing wrong wit of GparBlockHandl

When we got this information, we can run cycle through the GPAR objects and find 1 GPAR the object, that is responsible for the GPA. Code is
quite simple, as you can see. This is a simplified implementation of VsmmLookupMemoryBlockByHandle function of vid.sys driver.

Vid.sys driver also has additional procedure for encrypted memory reading - VsmmpSecureReadMemoryBlockPageRangelnternal. It uses AES
XTS through BCryptEncrypt\BCryptDecrypt functions from ksecdd.sys driver. I can’t find in what cases they are used, because even for
Shielded VMs with TPM enabled, memory is not encrypted. Perhaps some special areas are encrypted, but they haven’t been found still. But if
you try use vid.dll! VidRead\WriteMemoryBlockPageRange functions vid.sys starts analyze second bit in 0x18 byte of Prtn object (test byte
ptr [Prtn_obj+18h], 2), and if that bit is not zero crypto-memory functions will be executed. But for standard OS regions they will return fails.
It means, for reading Shielded VM memory using vid.dll functions, Prtn object must be patched (2nd bit in 18h byte must be zeroed).
Obviously, guest OS directly make reading/writing operations to the already allocated memory area without calling any functions from vid.sys.
All exceptions must be caught and handled by the hypervisor. Accordingly, if the root OS encrypts some parts of the memory, then the guest OS
will not be able to transparently access them.

Go back to the hvimm code. When we found a suitable GPAR object, we exit from cycle.

There are GPAR objects exist, that don’t describe the GPA, but instead of the necessary data,
contain a pointer to a certain usermode structure inside the vimwp.exe process. They are tied
to the memory allocated for virtual Hyper-V devices. Usually, there is 1 such GPAR object per
partition (see content of that memory later in Docker part of that article).

ay;
GparArray;

We don’t need in that objects during memory reading operations.

What data is contained in the GPAR object and will help to read the data from the guest OS?
This is another data type - an MBlock object (MEMORY_BLOCK). It contains guest PFN
data and other useful information. A fairly large structure, at the beginning contains the
signature "Mb ".

From all the fields, we need only a pointer to the GPA array. Size of the array element is 16
bytes. One 8-byte part contains the GPA (in guest OS), and other 8-byte part contains the
SPA information (in root OS).

KDbgLog("\tGpar Eleme

We can calculate SPA by following formula: if (objGpar->Gpalnd

KDbgPrintstring

1: kd> dq @xffffcc8150400000

FFffcc81° 50400000 00EE0EOO 0007800 0OF20800° 00000000
FFffcc81° 50400010 ©00E0E00" 00078CO1 0OF20800° 00000000
FFffcc81° 50400020 ©0000E0O 0007802 0OF20800° 00000000
FFffcc81' 50400030 ©0000E00" 0007803 0OF20800° 00000000
FFffcc81° 50400040 ©0EEOE0O" 0007804 0OF20800° 00000000
FFffcc81° 50400050 00000000 0007805 0OF20800° 00000000
FFffcc81' 50400060 00EEOEOO" 00078CO6 0OF20800° 00000000
FFffcc81' 50400070 ©00E0E00" 00078c07 0OF20800° 00000000

->pGuestGPAArray + Ox10 * (GPA- objGpar->Gpalndexstart +i));

For SPA reading, we need mapped it to root OS virtual address space. Use MDL structure for this:

There is an array of PFN at the end of each MDL structure. A pointer to it can be obtained
using MmGetMdIPfnArray macro. When we received the pointer, we had wrote HostSPA
index to it. Of course, it is possible to put in MDL more than one PFN at one time. But there
is a chance to get to the border of GPAR blocks, therefore memory reading is done page by page. For Full VM, this is not very profitable, since

pMDL = IoAllocateMdl(VirtualAddress,

the size of each block is large enough, but speed is still good.
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Next, we get virtual address using the nt!MmMapLockedPagesSpecifyCache function and use it to copy guest OS memory block using
nt!RtlCopyMemory. Accordingly, reading is performed in a loop. 1 memory page is copied on 1 iteration. During copying, it is recommended to
pause the virtual machine in order to avoid memory modification during reading. In LiveCloudKdSdk, the SdkControlVmState function is
implemented for this. It suspends the execution of the virtual machine either by the usual powershell-cmdlets Suspend-VM\Resume-VM, or
works with the special register of each virtual processor calling HvWriteVpRegister hypercall and set the HvRegisterExplicitSuspend register to
0 (resume) or 1 (suspend).

Container memory reading

Consider reading the container’s memory on Windows Defender Application Guard example (to use it, it’s need install same name component
in Windows 10. It has been present since the 1803 build). Access to memory of Windows Sandbox and docker container in Hyper-V isolation
mode is same.

It made by next function of hvmm.sys driver:
BOOLEAN VidGetContainerMemoryBlock(PVM_PROCESS_ CONTEXT pPartitionHandle, PCHAR pBuffer, ULONG len, ULONG64 GPA)

Before executing it, as for Full VM, we must get partition handle first. Then, we will additionally need vmmem process handle. This process is
created, when containers work, and works in kernel mode only.

We can see it’s threads, when launched container on a 4-processor PC (there are no user mode threads):

B ymmem:5744 Properties - o X

824 Stack Module
83455 P 5/31/2018
Wait:Executive
0:00:01.203
0:00:00.000

;55

The vmmem process descriptor is present in the partition handle. We can find it, using ‘scrP’ signature (see the hvmm!VidFindVmmemHandle
function for details).

We get a pointer to the GPAR object, as same way for reading memory in Full VM. Next we see differences - other fields of the GPAR structure
are used to read blocks of memory. VmmMemGpaOffset - the main offset, which allows us convert GPA to SPA for a specific memory block.
There is additional offset present (SomeGpaOffset), which can influence to final result, but during my experiments it was always o.

Next, we calculate source address, using the following formula and copy data block directly from the address space of vmmem process:
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Now we can see key difference between reading container memory from reading Full VM memory: we need copy data from virtual memory of
the vmmem process. There is no need for memory mapping using MDL.

Hyper-V memory API

Direct access to memory without corresponding exported Windows functions is interesting, but a more reliable method is to use some of APIs,
which is provided by Microsoft. But for reliability you will have to pay the restrictions imposed by Microsoft on these APIs. In particular, for
hypercalls they work only with Full VM and for containers they always return FALSE, additionally they read\write no more than ox10 bytes at
one time. The vid.dll function APT is generally forbidden to be called from any module other than the vmwp.exe process in latest versions of
Windows.

Vid.dll has next functions for reading\writing memory:

¢ VidTranslateGvaToGpa
¢ VidReadMemoryBlockPageRange (wrapper on vid.sys!VidReadWriteMemoryBlockPageRange)
¢ VidWriteMemoryBlockPageRange (wrapper on vid.sys!VidReadWriteMemoryBlockPageRange)

And hypercalls (it must be called from ring 0):

¢ HvTranslateVirtualAddress
e HvWriteGPA
¢ HvReadGPA

See it in more detailed.
Reading\writing memory using hypercalls

HvReadGpa using is quite simple, if you don’t take, that memory block shouldn’t fall on the page boundary. Otherwise, the reading operation
will be broken and end of block, that must be read from the second page, will contain zero bytes. Blocking separation is implemented in the
usermode part of LiveCloudKdSdk. Driver hvmm calls WinHvReadGPA - HvReadGpa wrapper from winhvr.sys driver. You can call
HvReadGpa directly through vmcall, but before you will have to additionally perform operations to prepare hypercall parameters.

An additional check is performed before reading virtual address space using winhvr.sys!WinHvTranslateVirtualAddress. The function converts
a virtual address into a physical one, using the current context of the CPU (and accordingly, CR3 register).

Possible validation options (LiveCloudKd uses only HV_TRANSLATE_GVA_VALIDATE_READ and
HV_TRANSLATE_GVA_VALIDATE_WRITE).

#define HV_TRANSLATE_GVA_VALIDATE READ  (0x0001)
#define HV_TRANSLATE_GVA_VALIDATE_WRITE (0x0002)
#define HV_TRANSLATE GVA_VALIDATE_EXECUTE (0x0004)
#define HV_TRANSLATE_GVA_PRIVILEGE_EXEMPT (0x0008)
#define HV_TRANSLATE_GVA_SET PAGE_TABLE_BITS (0x0010)
#define HV_TRANSLATE_GVA_TLB_FLUSH_INHIBIT (0x0020)
#define HV_TRANSLATE_GVA_CONTROL_MASK (0x003F)

WinDBG in memory dump mode works with physical addresses only (for debugger it is file offsets). Accordingly, it makes all the work for
converting virtual address to physical, therefore we don’t need to do additional hypercall for checking memory address.

9/17



Microsoft Hyper-V Virtualization Infrastructure Driver Library (vid.dll) API
First, see vid.dll!VidReadMemoryBlockPageRange

VIDDLLAPI
BOOL
WINAPI
VidReadMemoryBlockPageRange(
__in PT_HANDLE Partition,
___in MB_HANDLE MemoryBlock,
__in MB_PAGE_INDEX StartMbp,
___in UINT64 MbpCount,
__out_bcount(BufferSize)
PVOID ClientBuffer,
___in UINT64 BufferSize
);
Partition parameter — it is user mode partition handle;
ClientBuffer — pointer to memory region, where result will be stored;
BufferSize — yes, buffer size, and nothing more;

Two parameters can cause some questions: MemoryBlock and StartMbp. MemoryBlock is number of the MBlock object from which data will be
read. In Windows Server 2008 R2 kernel-mode handle must be pointed as that parameter (yes, the user mode application contained kernel
mode descriptor addresses - the original version of LiveCloudKd was built on this logic):

https://github.com/comaeio/LiveCloudKd/blob/07ac5901ff5cac5258033f1ddgscfcebdoeo6815/hvdd/memoryblock.c#1159 (buffer contains
memory of vimwp.exe)

StartMbp is index, which is equal to physical memory page number. We just need to get the GPA and o, o }
divide it into PAGE_SIZE (0x1000). The page size in this case is virtual. For example, when ntoskrnl.exe o e s« st 520
image memory page is usually 2 Mb LARGE_PAGE, but the page numbers will still be 4 Kb granular for e et

SR
that region. Buffer can be specified less, then less data will be written to it. Everything is clear, with one © et o 5
exception - this index is relative to the beginning of MB_ HANDLE MemoryBlock. For example, for the L o

first memory block, index will match with physical memory page number. If blocks are placed

continuously, index of second block will be equal to page number minus first block size. Index of third block will be equal to page number
minus the size of the first block and minus the size of the second block. Everything seems to be clear. The main problem is that physical
memory blocks are not continuous. Moreover, these boundaries cannot be easily determined from the user mode. Microsoft didn’t provide such

APIs even from the time of Windows Server 2008 R2.

1 Livecloudkd - C

Matt used a separate function for searching descriptors in memory, but Microsoft closed this opportunity by replacing the descriptors with
their indexes in the table, located in kernel mode, and therefore I used vid.dll! VidReadMemoryBlockPageRange function.

g_Vidpll. dMemoryBlockPageRange ->PartitionHandle, (M i,MemoryBlockPageIndex,1ULL, Buffer, Size);

First, we can get the HANDLE numbers by doing a simple search, reading first memory page of each block. If function returns TRUE — it
means, that block exists, if FALSE - block doesn’t exist. Based on practical experience, I determined the maximum size of the index to be
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https://github.com/comaeio/LiveCloudKd/blob/07ac5901ff5cac5258033f1dd95cfc2bd0e06815/hvdd/memoryblock.c#L159

0x400. As we saw above, a large number of indexes are observed only for containers such as WDAG and Windows Sandbox, due to the fact that
each file is mapped in a separate block.

When we get array with indexes, we have could determine maximum block size by slightly modifying the binary searching algorithm in the
array.

We know, that memory block is continuous, therefore we can determine its boundary by setting the condition: when reading a block, the
subsequent block shouldn’t be read. Accordingly, first we can scan the memory and build the initial memory mapping scheme. But, as I wrote
above, there are gaps between the blocks, and therefore, to clarify the memory allocation, we will have to examine the
_PHYSICAL_MEMORY_DESCRIPTOR structure in guest OS.

0: kd> dt poi(nt!MmPhysicalMemoryBlock) nt!_ PHYSICAL_MEMORY_DESCRIPTOR
+0x000 NumberOfRuns :7
+0x008 NumberOfPages : oxbfee1
+0x010 Run : [1] _PHYSICAL_MEMORY_RUN

0: kd> dq poi(nt!MmPhysicalMemoryBlock) L20

ffff8b81°91615020 00000000 00000007 00000000 000bfee1 — all blocks count, summary blocks size
ffff8b81°91615030 00000000 00000001 00000000 0000009f — start position of block, page count in block.
ffff8b81°91615040 00000000 00000100 0OOOOV00  0000027b

ffff8b81° 91615050 00000000 0000037d 00000000 00005d86

ffff8b81° 91615060 00000000 00006105 00000000 00058dco

ffff8b81° 91615070 00000000 0005ef1b 00000000 00001080

ffff8b81° 91615080 00000000 0005ftff 00000000 00000001

ffff8b81°91615090 00000000 00060200 00000000 00060000

WinDBG has command to show PHYSICAL _MEMORY_DESCRIPTOR structure.

B! Select LiveCloudKd - o X

o: kd> Imemoryblock
Int |MmPhysicalMemoryBlock
PageCount

(en159

(en635 2 Kb

2 9
(en23942 93 Mb 536 Kb

(en363968 1 Gb 397 Mb 768 Kb
(en4224 ) 16 Mb 512 Kb

(en1 4 Kb

(en393216 ) 1 Gb 512 Mb

feel (On786145)
2 Gb 1022 Mb 900 Kb

As you can see, part of the guest OS memory blocks fits in one block allocated by the hypervisor. And part of the blocks of the guest OS
correspond to the blocks allocated by the hypervisor, with the same volume, but with some offset. Given that the offset is small, we can adjust
our table:
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The first block isn’t need for adjustment. Memory is mapping 1 in 1, which allows us to read data from the first block, where ntoskrnl.exe is
located, in order to calculate the values ??of the _ PHYSICAL_MEMORY_DESCRIPTOR structure later. After calculation, we can perform the
offset correction. I described in driver code the case, when one guest block can consist of several blocks, allocated by the hypervisor, but I
haven’t encountered such case in my stand. The last of the blocks with a size of 0x800 pages is used for video memory, as was explained above.
In our case, in a virtual machine, the maximum physical address available for reading is greater than maximum address, specified in
PHYSICAL_MEMORY_DESCRIPTOR. This block is not specified in PHYSICAL_MEMORY_DESCRIPTOR, so we just assume, that it goes
sequentially after the last guest OS block. Offset of this block can’t be determined without a driver in the host OS. We can assume, that this is
memory used by the device, and it can be read, for example, by LiveCloudKd.

After correction, we can read all physical guest OS memory without the driver, excepting pages. Which was paged in pagefile.sys.
I complete code description on that point. The remaining details can be found in sources of hvmm driver.

Additional details

I wrote PyKD script ParsePrtnStructure.py for better visualization of GPAR objects and Mblock objects (link is given at the beginning of the
article). For using it, you have to find partition handle first. To do this, run hvmm.sys driver, which outputs the value of this descriptor to the
debugger and then inserted this value into the script.

Script output for Windows Server 2019 guest OS:

0: kd> !py @"F:\ida_files\ParsePrtnStructure.py"

Partitis

Partition id:

MBBlocks table address:

signature:
Partition name:

2

Prtn

Win2e19-62

oxffffag024f32becoL

MBBlocks table element count: 2

Gpar block handle address: @xffffa8024dd26700L

Gpar Element Count: 3

pGparArray address: @xffffageafefdssel

GPAR Array content:

Index Sign StartPageNum EndPageNum UmFlag MBlock SomeGPA VMMEM GPA

e Gpar oxe ex8fbff o exffffa80248f67d2eL oxe exe

1 Gpar exfecee oxfecee 1 8x141F5c3c460L oxe exe

2 Gpar exfffgee oxffffff -] oxffffa8024f8bfo2eL exe exe

MBlock Array content:

Index Sign MBHandle BitmapSize®l BitmapSize82 GPA Array

0 Mo 1 ox8fcen ox8fcee  Oxffffase24fceeeeoL

1 Mb 2 ox8ee ox8ee exffffage24fsf7eeeL

0: kd> g
@: kd> lpy @"F:\ida_files\ParsePrtnStructure.py”
Partition signature: Pre
Partition name: Virtual Machine
Partition id: 3
MBBlocks table address: @xféFf95sbaactdesel
HBBlocks table element count: 955
Gpar block handle address: oxfFf958b784c2cioL
Gpar Element Count: 956
PGparArray address: @xFFFf358b7bcro000L
GPAR Array content:
Index  Sign g EndPageliun € #Block SomeGPA offset VmmenGPA offset
o Gpar oxaFeer o oxrrosab7If2faanL exe ex19e35040000L
1 Gpar oxa0000  OXFTFEF o exFrFrosabzacdelel exe ex1912c350000L
2 Gpar €x200000  @x201FFF o exFrrrossb7234de10L exe ex191e4350000L
3 Gpar oxfecoo  exfecoo 1 ex23es1crbadel exe
4 Gpar ©x100000  ex10e0lc o exFrFrosab7icsdezeL oxe ex1se75040000L
s Gpar exioe01d  ex1ee2ec o exFrFrosab7ldsseacL exe ex19e75060000L
s Gpar oxlc020d  ex10e3a6 o exFrFosab7sdasssacl oxe ex15e75250000L
7 Gpar ox1003a7  ex10e3d7 o exFrFrosab7lcresacL oxe ex19e75370000L
s Gpar exi003d3  ex10e407 o exFrFrosab7lasesact exe ex19e75430000L
s Gpar oxl00408  ex1eedlc o exFrFosab7lcessasl oxe ex15e75460000L
10 Gpar oxl0041d  ex10e42a o exFrFrosab720bde20L o0 ex19e75430000L
1 Gpar oxloeazb  ex100434 o exFFFfosab72027620L oxe ex19e75430000L
12 Gpar ox100435  ex10ed3e o exFrFosabascdcael oxe ex19e754a0000L
13 Gpar 0x10043F  ex100761 o exFrFrosab73ss7sdeL oxo ex19e754b0000L
1 Gpar oxi007b2  ex10e7c7 o exFFFosab7icI7co0L oxo ex19e75830000L
15 Gpar ox1007¢8  ex10e7dd o exFrFosabasldIsTeL oxe ex19e75850000L
16 Gpar oxicerde  exice7ee o extFFfosab7saficool oxe @x19e75570000L

In Hyper-V containers all Mblock objects contains zero. Like this:

0: kd> dc oxffffg58b7fod14do

ffffg58b *7fod14do 00000000 00000000 00000000 00000000 ........

ffffg58b *7fod14e0 00000000 00000000 00000000 00000000 .........u..e..
ffffg58b *7fod14fo 00000000 00000000 00000000 00000000 ................

there is additional type of block inside vid.sys driver: reserve bucket block

(VSMM_RESERVE_BUCKET)

But it is not need for reading guest OS memory in standard case. We see that address is
pointing to themselves (0x10 alignment).

Docker container with Hyper-V isolation mode
Docker container in Hyper-V isolation mode creates quite a lot of processes (processes for
1 Windows Server 2019 nanoserver 1809 container):

3004
4516
6012
6224
3308
2324
6352

001
002

548/s
1208/

428 MB NT AUTHORITV\SYSTEM
7.8MB NTVIRTUAL MACHINE\BAG74342-711D-4B4A-B0B7-F19997025858
511 MB NTVIRTUAL MACHINE\66DC1987-2FAT-4C11-862F-6D9CB25947A1
1GB NT VIRTUAL MACHINE\G6DC1987-2EA7-4C11-862F-6DICB25047A1
1GB NT VIRTUAL MACHINE\G6DC1987-2EA7-4C11-862F-6DICB25947A1
1GB NT VIRTUAL MACHINE\GAEOSAC6-D266-4B87-BE2F-12180FT0AE39
7.34 MB_ NT VIRTUAL MACHINE\GAE9SAC6-D266-4B67-BE2F-12180F70AE39

MBlock Array content:

Index Sign MBHandle  BitmapSizeel  BitmapSizee2 GPA Array
° Mo 1 ©x40000 ©x40000  OXTfff958b6dO10000L
1 Mb 2 ox1d ox1d  exffffos58b733fdc7eL
2 Mb 3 oxife oxife  exffffossb733eeq00L
3 Mb 4 ox1sa ox19a  @xffffossb7slefeeel
a Mb B ox31 ox31  Bxffff958b72f6d626L
B Mb 3 ox30 Ox30  Oxffff958b73460620L
6 Mo 7 ox15 ox15  exffff9s58b744fdcbeL
7 Mb 8 oxe Oxe  OxFFFfI58b8cICc7300L
8 Mb B oxa oxa  BxfFffI58b80efon7eL
) Mb 10 oxa oxa  OxFfff958bseefs2boL
10 Mo 1 ox373 ox373  exffffossb73854000L
11 Mb 12 ox16 ox16  Oxffff958b87b91360L
12 Mb 13 ox16 ox16  Oxffff958b87b92050L
13 Mo 14 ex11 ox1l  exffffossb72abeebelL
14 Mb 15 exic exic  exffff9ssb72bf76deL
15 Mb 16 ox11 ox1l  exffff9ssb72absi7eL
16 Mo 17 ox26 0x26  Oxffffos8b7lcafseeL
17 Mb 18 ox59 oxs9  exffffossbefealelel
18 Mo 19 ox13 ox13  exffffosgbs7ac2eseL
19 Mo 20 oxia oxla  Oxffffossbs7bffofel
20 Mb 21 ox2b ex2b  exffffo58be3fcse2eL
21 Mo 22 ox14 ox14  Oxffffosgb73efsasel
22 Mo

Hyper-V Host Compute Service
Virtual Machine Worker Process
Virtual Machine Worker Process

Virtual Machine Worker Process

ox4e

6: k> de exfiFfaseiaLTenRax1290

¢erasen ara1sd0

ox40

OxFFffo58b756e1300L

20205252 Gogac00e 0200000 00080000 R

37415300 £F5fas0n afalena0 FFFfasr
a%a15300 £FFfas0n afalas00 FFFfasr
afa1s3co £Fifas0n afalanco FFFfasr
47418300 FFFrag02 474LEI0 FrPfasol
47418300 £FFfas02 4faLEle0 Frrfasol
afa1s3ta Freasen 4faLEsre FEFfasaz

5o,
5o
o,
5o,
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We see 2 partition handles (by the count of vmwp.exe processes). The name of 1st of them matches the name of the user in the context of

which the process is running.

1 k> lpy @7F:\ida Files\Parseprenstructure.py”

Parcition signature: pr

Partition a

VSBlocks table address: DxFFFfaSEES7TadeloL

1
poparanray address:  xFFFf599599447006L

GPAR Array content:

Tndex  Signature StartPagellm  Endpageliom  Blocksize MemoryBlockGpaRangeFlag Wlock SomecPa offset VimerGea offset
B par o0 orrrr oxsaca @ oxrreresasosasbesoL o ox12800000000L.
FBlock Array content:

Tndex  signature FBlock Address MBandle  Bitmapsizedl  Bitmapsizes A array

o R — 1 axso00 Same  oxtrrrssessaceeaseL

However, this partition has irrelevant table of MBlock objects:

1: kd> dc @xffff89e6977a4010

ffff8906° 97724010 ©000PO8c ©00PPEBE 9948b660 {8906
ffff8906° 97724020

ffff89e6" 977a4030 3

ffff8906° 97724040

ffff8906° 97724050 7

ffff8906° 97724060

Elements count is 0x8e, but the MBlock object itself is only one, and it is empty.
Name of 2nd partition coincides with the identifier, created for container, and contains necessary Nt-kernel data, that can be used to access the

memory of the container using WinDBG.

1: kd> lpy @"F:\ida_files\ParsePrtnStructure.py”

Partition signature: Pre

Partition name: 71
Partition id: 4

MBBlocks table address: exFFFF8906990F4010L

MBBlocks table element count: 193

Gpar block handle address: exffffsseesseessael

Gpar Element Count: 154

pGparArray address: @xFFFf83069496be10L

GPAR Array content:

Index  Signature StartPagelum  EndPageNum Blocksize  MemoryBlockGpaRangeFlag MBlock SomeGPA offset
e Gpar oxe ex3FFEE exaceee @  oxfffasessvedsseel exe
1 Gpar exa0000 exaoo1b exic ©  exFFffE30637bces60L oxo
2 Gpar exavo1c x40208 exted ©  oxfrfssessladcesel exe
3 Gpar 0x40209 xa03ad. ex1sc ©  oxFrf8s069765e660L oxo
a Gpar exa03as. exao3ae @ oxffffasessolasseel exe
5 Gpar exa03af exa0ges ex33b ©  oxfrffssesozsadseeL exe

Base address is the same as the Vmmem GPA Offset parameter, which is used for reading memory block from the context of the vmmem

process.

Options

The offset of file mapping region in another vmmem instance are the same as VmmemGPA offset, using by hvmm.sys driver.

Base address

0x10000
012800000000 Private

0¢12500000000  Private: Comit

5 vinmenn (6224) Properties

Refresh

Tive
Private

General Statsics Performance Threads Token Mocules Memory Environment Handles GPU  Disk and Network Comment Windouis

S Protecton Use
468 N USER_SHARED_DATA

168 RW
168 RW

- o x

Search Memory (Ctr+k) s

VmmenGPA offset

ex12500000000L
ex12875010000L
ex12875030000L
ex12875220000L
ex128753ce00eL
ex128753deeeel

5 mmem (2324) Praperties - X
General Statisics Performance. Threads Token Modules Memory Enviranment. Handies GPU  Disk and Nebwork. Comment. Windows
Options | Refresh [Search Memory (ctr+K) »
Base adress Tipe Sze Profection Use ~
0x10000 Prvate 460 NA USER_SHARED DATA
0x12800000000  Prvate 168 RW
0612875010000 mage. 1218 R
12875030000 Tmage. 19308 R c
012675220000 Tmage L61MB R c M
0x126753c0000  Image i R c
0x1287530000  mage. 32348 R 2
012875710000 Tmage. 81k R <
02875730000 Tmage Bk R c
012675750000 Image @10 R c i m
0x12875770000  Image 11246 R 2
0x12875790000  mage. 85 R
OAN0  Imige 156K5 & c
0012675760000 Image 7510 c I m
0x12675800000  Image 7216 R c
0x12875620000  mage. 5246 R 2
20RO Image 170k5 R <
012875060000 Image B0k R ¢
012675680000 Image 152165 R c
0x12875800000  Image ks R c
0x128756c0000  mage. 63218 R
012875060000 Tmage 2846 R c
012675030000 Image & R c I m
0x12875250000  Image 31745 R c
0x12875080000  Image. 364 R c
2000 moge 78448 R < v
oamsecn0n < >
Close

Different vmmem processes load different executables. But in the process, where there are fewer files, the number of active threads is 0.
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The 2nd process of the vmmem docker container is not critical to execution. It can be killed

through Process Hacker (the memory size will be several tens of kilobytes). The 1st vmmem

process is also not critical for reading memory. The registers of the section to which the

process is attached have the correct values, but when reading the kernel mode memory, zeros

are returned.

After stopping the two aforementioned vmmem processes, you can still safely start processes

inside the container through docker exec.

Call stack of vmmem creation (3 times per container starting process)

1st PsCreateMinimalProcess

2nd PsCreateMinimalProcess

1: kd> lprocess 6 @ vmmem
PROCESS ffff890697eabese

SessionId: @ Cid: 1850  Peb: 000@@@@ ParentCid: 177c

DirBase: 119d00002 ObjectTable: ffffe707a7e384c@ HandleCount:

Inage: vmmem

PROCESS f£f£890694Fag0ce

SessionId: @ Cid: @cec  Peb: 90060@0@ ParentCid: 1850

DirBase: 37d60002 ObjectTable: ffffe707a54a81lcé HandleCount:

Inage: vmmem

PROCESS ffff890697ac7300

SessionId: @ Cid: @914  Peb: 0000000@ ParentCid: Bcec

DirBase: 133200002 ObjectTable: ffffe707a54a9c80 HandleCount:

Image: vmmem

3rd PsCreateMinimalProcess

: kd> ken

# Call Site

00 nt!PsCreateMinimalProcess

01 nt'VmCreateMemoryProcess

02 Vid!VsmmNtSlatMemoryProcessCreate
03 Vid!VsmmProcesspMicroVmSetup

14 vmwp!VidPartitionManager: Initialize

15
vmwp!VidPartitionManager::Createlnstance

We again see a pseudo Gpar object pointing to a user mode structure (as seen above, this block is created for interaction with virtual devices):

2: kd> ken

# Call Site

00 nt!PsCreateMinimalProcess

01 nt'VmCreateMemoryProcess

02
Vid!VsmmNtSlatMemoryProcessCreate
03 Vid!lVsmmClonepTemplateCreate
13 vmwp!WorkerTaskSaving::StartSave
14
vmwp!WorkerTaskSaving::RunSaveSteps
15 vmwp!WorkerTaskSaving::RunTask

188 Gpar exas1es ox45217 oxaf ©  oxfrff89e6990f7dseL
189 Gpar x45218 oxas523F ox28 @  exfrffeoesssebenlel
1% Gpar exa5240 ox45249 oxa ©  oxFFFfB90694eeasdeoL
101 Gpar oxa524a ox4s570 ox327 ©  exfFFFB9069817abs0L
192 Gpar 0x45571 oxds5a8 ox38 ©  exfrff890694aabdseL
193 Gpar exfecoe oxfecoo ox1 1 ex22f69043d20L

For reading memory inside this block we have to enter vmwp.exe context:

: kd> Iprocess @ @ vmup.exe
PROCESS Ff8906972da030
Sessionld: @ Cid: 11ad  Peb: d3895ed06@ ParentCid: 0f48
DirBase: 133ddege2 ObjectTable: ffffe7673f786288 HandleCount: 427.
Inage: vmup.exe

PROCESS ££5906951ec080
SessionId: @ Cid: 177c  Peb: Gb3af21000 ParentCid: 0740
DirBase: 120400002 ObjectTable: FFFfe707a7388d00 HandleCount: 273.
Inage: vmp.exe

PROCESS £Ff890691b40080
ionld: @ Cid: 18do  Peb: 8752dd5000 ParentCid: @f4g
DirBase: 12af0@002 ObjectTable: ffffe707a54a8749 HandleCount: 951.
Inage: vmup.exe

1: kd> .process FFFf890691640080
Implicit process is now ££ff5306 91640080
WARNING: .cache forcedecodeuser is not enabled
1: kd> .reload

Connected to liindows 10 17763 x64 target at (Tue Sep 3 9:06:53.768 2019 (UTC + 3:00)),

Loading Kernel Symbols

Loading User Symbols

1: kd> dps @x22769643d20

000022F 69043020 000076’ 14e6a458 vmup |VND_HANDLER_CONTEXT: :
06000227 69043d28 00000606" 00000066

000022 69043d30 01000001° 67000601

6000227 69043d38 00000666" 00000060

0000022 69043040 00000000" 00000660

6000226904348  €0000680" 00000660

8000022 69043d56 0000022F 68ec5a6e

600022 69043d58  0000022f 682C6140

000022F 69043d56 00000060" 00000660

800022 69043d68 €0000680" 00006660

06000227 69043d70 000076  14e6a418 Vmp!VND_HANDLER_CONTEXT: : "vFtable"
8800022 69043d78 000076  14e6a3c@ Vmwp!VND_HANDLER_CONTEXT: : 'vftable'
06000227 69043d80 000076  14e6a368 Vmup!VND_HANDLER_CONTEXT: : vFtable"
8000226904388 €0000660" 00006660

66000227 69043d90 00000660" 00000050

000022F 69043d98 0000022f 68FF5340

*vftable'

1: k> dps 0000776 14e6aiss
800876 14262458 0800715 14405310 vmap | VID_HANDLER_CONTEXT: : vector deleting destructor
N

00087F6 14a6adc0 00007 FFE" 14cosb

0 uruap | VND_HANDLER_CONTEXT' :Preparesa1

8006775 19a6a458  08007FF5 " 14d30a80 vinup VIID_HANDLER_CONTEXT: :Unprepareself
8006775 14263476 08007£F5 " 14d3dbdd vmap !Vl :Vmsharabledbect  :Quiescaself

6900776 14262475 00907575 14d0c110 ymplvnl:

0: kd> ken

# Call Site

00 nt!PsCreateMinimalProcess

01 nt'VmCreateMemoryProcess

02 Vid!'VsmmNtSlatMemoryProcessCreate
03 Vid!VsmmCloneTemplateApply

13 vmwp!VidPartitionManager: Initialize

14
vmwp!VidPartitionManager::Createlnstance

oxe ©x1287a6d0000L
oxe ex1287a760000L
oxe ex1287a730000L
oxe ex1287a740000L
oxe ©x1287aa70000L
oxe oxe

ptréd TRUE

003076 14006110 vruap! VL.

000776 14262488 08007176 1495500 vmap! VL :VmAutoLack: ' RTTI Complete Object Locator”

00007776 14e62490 00007 FF5 " 14d7aced vmip VL VAl

wtoLock : vector deleting destructor

890875 14263438 08007F75 14295599 vmp VnbConServiceAceass:: RTTT Complate Object Locator”
00007F%6" 14e62420 00007FF6 " 1adacead vmip!VbConserviceaccass: : vector deleting destructor’

0008775 14acadas 0B0G7FFE 14c0E110 vmap!un.

8908775 14263468  08007+75 " 14d3dbe0 vmp VL :VmSharabledbect  :Quisscaself

000876 14ataich 00007 FFE" 1408110 vmip !V
600077%6" 14esadcs 00907575 14d0e110 vrmplvn:

000776 14a6a4de 0800716 14899558 vmip!VnbCanServiceAccass:: RTTL Complete Object Locator”
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1: kd> dps 08007FF6 14e6a418

0000776 14262418
0000776 14262420
2000776 14262428
0000776 14262430
0000776 14262438
0000776 14262440

0000776 14d69750 vmuip! VND_HANDLER_CONTEXT: : AddReference
©0067f6" 14d09350 vmp ! VND_HANDLER_CONTEXT: :RemoveReference
000676 14d499e6 vmp ! VND_HANDLER_CONTEXT: :GetCallbackBatch
000076 14d494d0 vmup !Vl : :VmComLocalMemStream: : GetBufferOffset
000075 14d499F8 vmwp| Processoriianager: :GetVirtualProcessorCoun
©0007Ff6" 14049640 vmip! g

t
1lowed

0000776 14d49ab0 vmwp ! ProcessorManager: : GetCpuGroupId

©0067Ff5 14299450 vmip | VND_HANDLER_CONTEXT: : "RTTI Complete Object Locator’
000676 14005216 vmp! VND_HANDLER_CONTEXT: : *vector deleting destructor’
9000776 14d08b70 vmiip | VND_HANDLER_CONTEXT: :Prepareself

000076 14d3a00 vmup!VND_HANDLER_CONTEXT: :UnprepareSelf

0006776 14d3dbde vmp!Vml: :VmSharableObject: : Quiesceself

0006776 14d0e116 vmp ! Vml : :VmConnectionPointContainer<ComVirtualMachine>
©0067f6 14d0e110 vmwp !Vl : :VmConnectionPointContainer<ComvirtualMachine>
©0067f6" 14e9a5d8 vmwp!VmL: :VmAutoLock: : ‘RTTI Complete Object Locator'
©0007Ff6" 14d7aded vmwp!Vml: :VmAutoLock: : "vector deleting destructor’

0000776 14262448
0000776 14262450
0000776 14262458
0000776 14262460
0000776 14262468
0000776 14262470
0000776 14262478
0000776 14262480
2000776 14262488
2000776 14262490

ConnectionPointContainer<ComVirtualMachine>
ConnectionPointContainer<ComvirtualMachine>

Vmwp.exe process of docker container contain descriptor of files, that used inside container:

1 vmwp.ese (6352) Properties

General Satistics Performance Threads Token odules Memory. Environment Handles GPU Disk and Network Comment. Windows

Options
Type Nome

Fle c

il C\Program Datadocker\vindowsfiter\ieScalO 900665 et 13472822 Il VM files Wi

File c 7 iyl incs

Fle c 3-38EE-11D1-85E5-00C04
File c 7 1044553711 -

File c 104455371

File c AlRO0I(F75066C3-38EE 11D1-5E5 00COA.
File c 1044553711

File c 1015531 s

Fie c 1044553711

File c

e c

il c

File c 7 i

File c 1044553711351

File oy 104552711 oncos.
Fie c

Fle iy lose.dl

Fie c 1049553711

File c 1044553711 ou

Fie c 104955371 3

Fle c 1044553711 PEFAULT

More information about docker containers internals you can see in video from Microsoft Ignite conference:
https://www.youtube.com/watch?time continue=2291&v=tG8R5SQGPck (OS internals: Technical deep-dive into operating system
innovations - BRK3365, starting from 38:11).

Usage examples
In which programs can we use the ability to read/write memory to the guest OS?

LiveCloudKd (as an alternative to Sysinternals LiveKd in the -hvl option part).
On screenshot, one Full VM with Windows Server 2019 and 1 Docker container in Hyper-V isolation mode are running on Hyper-V host server.

https://github.com/gerharto1/LiveCloudKd/releases

1 LiveCloudkd

Dumper & Li

rname)

, D
Sc6118 (PartitionId = ex4, Docker GUID)

rtual machine you want to play with

EXDi-plugin for WinDBG - the options are the same, but allows you to use legal functions for WinDBG integration (LiveCloudKd uses hooks of
some functions inside WinDBG). It even works with WinDBG Preview, which itself runs in a separate container (UWP application). At the time
of writing, EXDi-plugin plugin only works with Windows Server 2019\Windows 10 with the hvmm.sys driver loaded, since it requires a write
operation to the guest OS. The screenshot shows the operation of WinDBG Preview in EXDi mode and the mimilb.dll plugin, which is part of
the mimikatz utility.

https://github.com/gerharto1/LiveCloudKd/tree/master/ExdiKdSample
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BES it 1900125

(=
(7 step Lut
"ITI}: : T step Into
P e O

embly  Lecal Feodback
Hepr  H

s

p——

€ senjaminggentiliiui.con )
minikatz e.20)
WinDBG extension |+ ¢ 0f

Rioumpy sowibey o

@: ka» lprocess B B lsass.exe
# Then switeh te its context
9: k> .precess /v [p <EPROCESS address>

Cid: o26a  Peb: 47538Sedna ParentCic: olec
34996802 ObjectTable: FFTf570af3s2b98e HandleCount:

2452,

FFFbab4sA3076E0
#FFfbadd 52307030

Current krotgt: 5 credentisls
* re4_hwac_nt : aab34G7e62b3767a83eFh1c79377553C
* rc4_hmac_old : aab34G7e6203767a83eFb1c79377553C
* red_md4 i ssb3ad7e62b3767a83RTb179377553¢

e54c21t:
* ams128_hmac © 278bd3c52211485d6b57892449725106

IYPER-V_COM (HYPER-V)

=
The plugin for the MemProcFs program (https://github.com/ufrisk/MemProcFS), which is integrated with pypykatz

(https://github.com/skelsec/pypykatz) also allows you to scan the guest OS for hashes (in the screenshot, guest OS - domain controller, based
on Windows Server 2016).

https://github.com/gerharto1/LiveCloudKd/tree/master/LeechCore

[ [

It is clear, that for using this method you need get access the host server with administrator rights. So, first of all, I position the utility as an
opportunity to dig inside the OS when the debugger is long configured\too lazy or unable to connect (for example, the Secure Boot option is
active).

Conclusion

The article described various ways to accessing memory of Hyper-V guest partitions, created in a variety of cases. I hope that working with
Hyper-V memory has become a little more understandable. Hyper-V evolves very quickly and integrates more and more actively into the
Windows kernel, while remaining virtually undocumented.

The information may be useful to those who want to understand the internal structure of Hyper-V, and possibly get transparent access to the
guest OS memory, as well as make its modification. For LiveCloudKd usage it is necessary to have access to the root OS, where the virtual
machines are located, and I don’t think that it carries any security risk. However, for Windows Server 2016 such access can be obtained using
only the user mode API, which is rather problematic to control. For protection, it is recommended to enable either the Shielded VM option
(then, to bypass it, you will need to load the driver), or use Windows Server 2019, where Microsoft blocked the API call from vid.dll for third-
party processes and turned on for vmwp.exe the prohibition of injecting libraries, that not signed by Microsoft. However, the latest work on
introducing code into third-party processes, demonstrated in August 2019 at Blackhat in Las Vegas (report by Process Injection Techniques -
Gotta Catch Them All from Itzik Kotler and Amit Klein from SafeBreach Labs), shows that there are ways to get around these restrictions from
user mode (of course, this requires local administrator rights). The only reliable protection against such access to guest OS is Microsoft's Code
Integrity in conjunction with the Shielded VM.
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