
1/4

April 5, 2021

Beyond the good ol' LaunchAgents - 12 - QuickLook
Plugins

theevilbit.github.io/beyond/beyond_0012

This is part 12 in the series of “Beyond the good ol' LaunchAgents”, where I try to collect
various persistence techniques for macOS. For more background check the introduction.

TL;DR

This technique is very similarly to Spotlight Importers, but heavily sandboxed. It’s even more

limited as the user need to specifically want to preview the file.

Intro

This will be a short post and it goes hand in hand with my previous one that detailed the use

of Spotlight Importers for persistence. Jonathan’s book also details QuickLook plugins and

fG! (@osxreverser) on Twitter also said that he used to play with this, so I decided to take a

look as well.

What are QuickLook plugins?

QuickLook plugins are invoked when we hit the SPACE bar in Finder to get a quick preview

of the file, without opening it, to me this is one of the most convenient feature in Finder, and

it’s super fast. These plugins can be registered for filetypes similarly to importers, and they

will render a quick preview for you or whatever the plugin provider decided to show. The

output is arbitrary. These plugins are in a bundle named qlgenerator , and has a similar

structure to a regular applications. These can be located in the following locations:

/System/Library/QuickLook
/Library/QuickLook
~/Library/QuickLook
/Applications/AppNameHere/Contents/Library/QuickLook/
~/Applications/AppNameHere/Contents/Library/QuickLook/

We can list our current plugins with the command qlmanage -m plugins .

Creating a .qlgenerator

We can go to Apple’s website and there is a long, decent writeup about how-to create such

plugins: Quick Look Architecture. Essentially there is a sample project in Xcode for this, and

yes, it’s also there in Xcode 11, which is very welcome. We can find also numerous blog posts

about this, I found that QuickLooks are much more broadly discussed as Spotlight importers,

https://theevilbit.github.io/beyond/beyond_0012/
https://theevilbit.github.io/beyond/beyond_intro/
https://theevilbit.github.io/beyond/beyond_0011/
https://twitter.com/osxreverser
https://developer.apple.com/library/archive/documentation/UserExperience/Conceptual/Quicklook_Programming_Guide/Articles/QLArchitecture.html#//apple_ref/doc/uid/TP40005020-CH4-SW4

2/4

and I found a few nice plugins that I need to start using :) So I went on the quick route, and

took an existing project and cleaned it up, similarly to the previous post. I used GitHub -

digitalmoksha/QLCommonMark: QuickLook generator for beautifully rendering

CommonMark documents on macOS, which turned out to be a very nice MD previewer. For

first I just compiled it and tested if it works out-of-the box, and it does.

After cleaning up, we remain with a few files, and here is what we need:

1. Info.plist file - this file should detail the various file types the QL plugin will

support, the related part, looks like this:

<key>CFBundleDocumentTypes</key>
<array>
 <dict>
 <key>CFBundleTypeRole</key>
 <string>QLGenerator</string>
 <key>LSItemContentTypes</key>
 <array>
 <string>net.daringfireball.markdown</string>
 <string>net.daringfireball</string>
 <string>net.multimarkdown.text</string>
 <string>org.vim.markdown-file</string>
 <string>com.unknown.md</string>
 <string>com.foldingtext.FoldingText.document</string>
 <string>dyn.ah62d4rv4ge8043a</string>
 <string>dyn.ah62d4rv4ge80445e</string>
 <string>dyn.ah62d4rv4ge8042pwrrwg875s</string>
 <string>dyn.ah62d4rv4ge8045pe</string>
 </array>
 </dict>
</array>

2. main.c file - this is auto-generated, we don’t really need to modify it. Similarly to the

mdimporters this will make our plugin work.

3. GenerateThumbnailForURL.m - this file is responsible for generating a thumbnail via

the GenerateThumbnailForURL function.

4. GeneratePreviewForURL.m - this file is responsible for generating the quick preview

via the GeneratePreviewForURL function. This is what I modified.

Really that’s it. The last two functions can be empty if we want and if we don’t want to error

out, we simply return noErr from both. There are also cancel functions for the preview

generation, but those can be also empty. I basically copy pasted my code form the other

importer, and implemented it here. The only thing I had to change is handling file reference,

as here we got it via CFURLRef . Here is the full code:

https://github.com/digitalmoksha/QLCommonMark

3/4

OSStatus GeneratePreviewForURL(void *thisInterface, QLPreviewRequestRef preview,
CFURLRef url, CFStringRef contentTypeUTI, CFDictionaryRef options);
void CancelPreviewGeneration(void *thisInterface, QLPreviewRequestRef preview);

/* ——————————————————————————————————————
Generate a preview for file

This function’s job is to create preview for designated file
—————————————————————————————————————— */

//——————————————————————————————————————
OSStatus GeneratePreviewForURL(void *thisInterface, QLPreviewRequestRef preview,
CFURLRef url, CFStringRef contentTypeUTI, CFDictionaryRef options)
{

 NSLog(@“Hello from peristent quicklook by csaby :)”);
 NSURL *nsurl = (__bridge NSURL *)url;

 NSString* tempDir = NSTemporaryDirectory();
 NSString* tempDirFolder = [tempDir
stringByAppendingPathComponent:@“TestPersist”];
 NSString *source = nsurl.path;
 NSString *theFileName = [[source lastPathComponent]
stringByDeletingPathExtension];
 NSString *destination = [tempDirFolder
stringByAppendingPathComponent:theFileName];
 NSError *error;
 NSFileManager *fileManager = [NSFileManager defaultManager];

 //create temp folder
 BOOL fileOK = [[NSFileManager defaultManager]
createDirectoryAtPath:tempDirFolder withIntermediateDirectories:NO attributes:nil
error:&error];
 if (!fileOK)
 NSLog(@“createDirectoryAtPath %@“, [error localizedDescription]);

 //copy file
 if ([fileManager copyItemAtPath:source toPath:destination error:&error]){
 NSLog(@“Copy Success from: %@, to %@“, source, destination);
 }
 else{
 NSLog(@“Copy error: %@“, error);
 }

 //network test
 NSString *URLString = [NSString stringWithContentsOfURL:[NSURL
URLWithString:@"https://www.google.com"]];
 NSLog(@"URL: %@", URLString);

 return noErr;
}

//---
void CancelPreviewGeneration(void *thisInterface, QLPreviewRequestRef preview)
{

4/4

 // Implement only if supported
}

If you want to put this inside an application, follow the steps I described in my previous post.

The only difference is at the end, the copy files build phase will need to have a different

destination, specifically Contents/Library/QuickLook . The above code can be found in

my GitHub project: macos/PersistentQL at master · theevilbit/macos · GitHub

Installation

Very simple, we just copy the qlgenerator to one of the places described above, or install it

as part of an application bundle. The system will automatically find it, but if not, we can

either reboot or run qlmanage -r to reset the quicklookd daemon process. If it’s in an

application bundle it can take quite some time to be found, or we need to open the app.

Luckily similarly with mdimporters, if we download an application, and let Safari auto-unzip

it, the QL plugin won’t be registered, so we can’t drop an app with drive by download and

hope that the embedded plugin will run.

Conclusion

As noted before, I think plugins in macOS are quiet unexplored in terms of persistent

mechanism. This is yet another example of what could you, and yes, it’s rather limited in this

case, but I think an attack has many building blocks, and this can be one of them.

https://github.com/theevilbit/macos/tree/master/PersistentQL

