
1/3

May 30, 2021

Beyond the good ol' LaunchAgents - 16 - Screen Saver
theevilbit.github.io/beyond/beyond_0016

This is part 16 in the series of “Beyond the good ol' LaunchAgents”, where I try to collect various persistence techniques for macOS. For more
background check the introduction.

Screen savers have been detailed recently by Leo Pitton his blog post: “Saving Your Access”. Considering that he already wrote most of

the interesting stuff, I will try to show some new information, but there will be some overlap.

Screen savers are macOS bundles with the bundle extension of .saver . Their Info.plist file doesn’t contain anything screen saver

specific, so we can really use any bundle with the right extension.

Screen savers can be found in 3 different locations.

/System/Library/Screen Savers - contains the system embedded screen savers

/Library/Screen Savers - Here we can install global screen savers, and it requires root access

~/Library/Screen Savers - Here we can install screen savers for the given user

Xcode contains a screen saver template, which creates a properly named bundle and an Objective C file, which has all the functions

defined which is expected by the system to be implemented by a screen saver. Let’s explore them.

@implementation DemoScreenView

- (instancetype)initWithFrame:(NSRect)frame isPreview:(BOOL)isPreview
{

 NSLog(@"hello_screensaver %s", __PRETTY_FUNCTION__);
 self = [super initWithFrame:frame isPreview:isPreview];
 if (self) {
 [self setAnimationTimeInterval:1/30.0];
 }
 return self;
}

- (void)startAnimation
{
 NSLog(@"hello_screensaver %s", __PRETTY_FUNCTION__);
 [super startAnimation];
}

- (void)stopAnimation
{
 NSLog(@"hello_screensaver %s", __PRETTY_FUNCTION__);
 [super stopAnimation];
}

- (void)drawRect:(NSRect)rect
{
 NSLog(@"hello_screensaver %s", __PRETTY_FUNCTION__);
 [super drawRect:rect];
}

- (void)animateOneFrame
{
 NSLog(@"hello_screensaver %s", __PRETTY_FUNCTION__);
 return;
}

- (BOOL)hasConfigureSheet
{
 NSLog(@"hello_screensaver %s", __PRETTY_FUNCTION__);
 return NO;
}

- (NSWindow*)configureSheet
{
 NSLog(@"hello_screensaver %s", __PRETTY_FUNCTION__);
 return nil;
}

@end

https://theevilbit.github.io/beyond/beyond_0016/
https://theevilbit.github.io/beyond/beyond_intro/
https://twitter.com/_D00mfist
https://posts.specterops.io/saving-your-access-d562bf5bf90b

2/3

Te functions are related to initialization, configuration of the screen saver and the actual drawing or animation. Here I added a log

function to each, which will create a log message with the function name that called it. We can use the __PRETTY_FUNCTION__ string to

get the function name runtime, as it always holds the current function being called.

I also added a constructor:

__attribute__((constructor))
void custom(int argc, const char **argv)
{
 NSLog(@"hello_screensaver %s", __PRETTY_FUNCTION__);
}

Once we installed a screensaver, and click on it in the preview pane, we will have the following log messages generated.

csaby@bigsur ~ % log stream | grep hello_screensaver
2021-05-28 08:43:59.329660-0700 0x1eb6 Default 0x6b54 692 0 legacyScreenSaver: (DemoScreen)
hello_screensaver void custom(int, const char **)
2021-05-28 08:43:59.329945-0700 0x1eb6 Default 0x6b54 692 0 legacyScreenSaver: (DemoScreen)
hello_screensaver -[DemoScreenView initWithFrame:isPreview:]
2021-05-28 08:43:59.330051-0700 0x1eb6 Default 0x6b54 692 0 legacyScreenSaver: (DemoScreen)
hello_screensaver -[DemoScreenView hasConfigureSheet]
2021-05-28 08:43:59.330178-0700 0x1eb6 Default 0x6b54 692 0 legacyScreenSaver: (DemoScreen)
hello_screensaver -[DemoScreenView hasConfigureSheet]
2021-05-28 08:43:59.330981-0700 0x1eb6 Default 0x0 692 0 legacyScreenSaver: (DemoScreen)
hello_screensaver -[DemoScreenView drawRect:]
2021-05-28 08:43:59.845980-0700 0x1eb6 Default 0x6b54 692 0 legacyScreenSaver: (DemoScreen)
hello_screensaver -[DemoScreenView startAnimation]
2021-05-28 08:43:59.846471-0700 0x1eb6 Default 0x6b54 692 0 legacyScreenSaver: (DemoScreen)
hello_screensaver -[DemoScreenView animateOneFrame]

What we can notice is that we are running within the process legacyScreenSaver . We can also find that after the constructor most of

the other methods are also called, thus we could use them as well to contain our code.

The legacyScreenSaver binary is located at

/System/Library/Frameworks/ScreenSaver.framework/PlugIns/legacyScreenSaver.appex/Contents/MacOS/legacyScreenSaver .

Since we run in the context of this process it worth taking a look. The process’s code signing information is shown below.

3/3

Executable=/System/Library/Frameworks/ScreenSaver.framework/PlugIns/legacyScreenSaver.appex/Contents/MacOS/legacyScreenSaver
Identifier=com.apple.ScreenSaver.Engine.legacyScreenSaver
Format=bundle with Mach-O universal (x86_64 arm64e)
CodeDirectory v=20400 size=935 flags=0x0(none) hashes=18+7 location=embedded
Platform identifier=12
Signature size=4442
Signed Time=2021. May 8. 15:02:04
Info.plist entries=27
TeamIdentifier=not set
Sealed Resources version=2 rules=2 files=0
Internal requirements count=1 size=96
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>

<key>com.apple.private.xpc.launchd.per-user-lookup</key>
<true/>
<key>com.apple.security.app-sandbox</key>
<true/>
<key>com.apple.security.assets.pictures.read-only</key>
<true/>
<key>com.apple.security.cs.disable-library-validation</key>
<true/>
<key>com.apple.security.files.bookmarks.app-scope</key>
<true/>
<key>com.apple.security.files.user-selected.read-only</key>
<true/>
<key>com.apple.security.network.client</key>
<true/>
<key>com.apple.security.network.server</key>
<true/>
<key>com.apple.security.temporary-exception.files.absolute-path.read-only</key>
<array>
 <string>/</string>
</array>
<key>com.apple.security.temporary-exception.mach-lookup.global-name</key>
<array>
 <string>com.apple.CARenderServer</string>
 <string>com.apple.CoreDisplay.master</string>
 <string>com.apple.nsurlstorage-cache</string>
 <string>com.apple.ViewBridgeAuxiliary</string>
</array>
<key>com.apple.security.temporary-exception.sbpl</key>
<array>
 <string>(allow mach-lookup mach-register)</string>
</array>
<key>com.apple.security.temporary-exception.yasb</key>
<true/>

</dict>
</plist>

The entitlement com.apple.security.cs.disable-library-validation explains why it can load third party bundles, it has library

validation disabled. Beyond that we find com.apple.security.app-sandbox , which indicates that it’s sandboxed. Based on the rest of

the entitlements it doesn’t have too much rights, although at least it can reach the network. If we use screen savers for persistence, it’s

good to have a sandbox escape in our toolbox, otherwise we are quite locked.

