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Instead of introduction

We can't imagine Windows without section objects (or file mapping objects in terms of
Windows API) and hardly can we find a Windows kernel subsystem that doesn't address it.
The great idea behind section objects is that instead of calling Windows File APIs to work
with a file, you can read virtual memory to get file data and write virtual memory to write file
data. But this simple concept doesn't have simple things under the hood. To simplify the
understanding of this difficult topic, we take Windows x86 edition with 32-bit pointers.

Don't worry if you can't understand all the things, even skilled Windows Internals readers
may have difficulties with this topic. I would recommend to read the corresponding chapter
from the Windows Internals book, because this blog post includes a lot of technical stuff and
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describes some kind of low level things.
The basic terms

So if you're ready, let's get started. First, we need to take a quick look at some technical
terms, because without understanding any of them, we can't get the full picture. Next we'll
focus on each of them in detail.

e Section object - a kernel object described by the _ SECTION structure. In the terms of
Windows API it's called file mapping object. There're two types of section objects:
pagefile-backed section and file-backed section. The first one is used when processes
want to share a region of virtual memory. The file backed section reflects the contents
of an actual file on disk.

e Virtual Memory Manager (VMM) - a set of Mm functions in ntoskrnl that are
responsible for all operations related to virtual and physical memory. The VMM also
creates, maintains and deletes section objects as well as their substructures (see below).

e I/O manager - in the context of our topic, these are Io functions in ntoskrnl that are
used by the VMM to perform I/O operations with the mapped file data. This subsystem
just initiates I/O operations, which are actually performed by file system drivers and
disk drivers on device stacks.

e PTE (Page Table Entry) - a structure that is used by the CPU and VMM to translate
virtual addresses to physical ones.

e Proto-PTE (Prototype PTE, PPTE) - a special type of invalid PTEs that is used only
by the VMM (not CPU) to work with section objects and serves as an intermediate level
for the translation virtual addresses to the mapped section pages (file data). PPTE
points to a subsection and helps the VMM to find file data that should be located in the
corresponding virtual memory pages.

e PTE pointing to PPTE - a special type of hardware invalid PTEs /with zeroed valid
(V) flag/ that is designed to find the corresponding PPTE in the Segment structure
(PPT).

e Prototype page table (PPT) - an array of PPTEs that is a part of Segment structure.
Once the process maps a section, the VMM fills the hardware PTEs of the virtual pages
with pointers to the elements of this array. When the process unmaps a section, the
VMM removes pointers to PPTEs from hardware PTEs.

* Segment - a data structure that provides the section object with the necessary
information to calculate pointers to subsections, it also contains a PPT.

e Segment Control Area (or just Control Area, CA) - a structure containing
information required for performing I/O operations with file data in or from the
mapped file. It's stored in the non-paged pool. With the help of CA the VMM can
address the same file as binary and as executable.
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e Subsection - a data structure containing the necessary information to calculate offsets
relative to the beginning of the mapped file using PPTEs. There is normally only one
subsection if the file was mapped as binary. In case if it was mapped as executable, the
number of subsections is the same as the number of sections in the mapped executable.

* Page fault (#PF) for section - a situation (an exception) when a thread tries to
access a virtual page mapped to the section, but its PTE is marked as not valid.

* Modified page writer - system threads that are responsible for synchronizing
modified file data in virtual memory with a disk file.

e Page Frame, Page Frame Number, PFN database - terms describing physical
memory: physical memory page, its number, numbers database. The latter includes
information about all physical memory pages (page frames) and is designed to track
status of each physical page (page frame).

Diving deeper into the Section kernel objects

Section is a kernel object that is created and maintained by the VMM. The MmCreateSection
function creates the kernel object, allocating memory for it from the paged pool, initializes its
fields, creates Control Area and Segment structures if needed (see MiCreateImageFileMap,
MiCreateDataFileMap). To create an object, the caller of MmCreateSection must provide a
pointer to a FileObject that describes the file to be mapped. Using the FileObject, the
functions mentioned above initialize Control Area and Segment structures.

typedef struct SECTION
{
MMADDRESS NODE Address;
PSEGMENT Segment;
LARGE INTEGER SizeOfSection;
union {
ULONG LongFlags;
MMSECTION FLAGS Flags;
y our
1C MM PROTECTION MASE InitialPageProtection;
} SECTION, *PSECTION;
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MmCreateSection is responsible not only for initializing a Section object, but also for
initializing and maintaining important PSECTION_OBJECT_POINTERS FILE_OBJECT-
>SectionObjectPointer structure. You can see its definition below.

typedef struct _ SECTION_OBJECT_POINTERS {PVOID DataSectionObject; PVOID
SharedCacheMap; PVOID ImageSectionObject;} SECTION_OBJECT_POINTERS;

e .DataSectionObject points to the Control Area structure if a file to be mapped as binary;
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e .ImageSectionObject points to the Control Area structure if a file to be mapped as
executable;

e .SharedCacheMap points to the shared cache map (see Inside the Windows Cache
manager). This field is used by the Cache Manager to cache file data.

As you can see all these three fields point to the structures needed to perform a certain type
of file operations. The SECTION_OBJECT_POINTERS structure is created by the FSD when
it gets a request to create (open) a file. The Cache Manager deals with .SharedCacheMap.
Even if there are no sections for the file object (i e .DataSectionObject and
.ImageSectionObject are NULL), .SharedCacheMap is almost always initialized (for disk
files), because the Cache Manager caches parts of the file to provide quick access to its data.
To create .DataSectionObject and .ImageSectionObject the VMM uses functions
MiCreateDataFileMap and MiCreateImageFileMap.

NTSTATUS MmCreateSection(OUT PVOID *SectionObject, IN ACCESS _MASK
DesiredAccess, IN POBJECT _ATTRIBUTES ObjectAttributes OPTIONAL, IN
PLARGE_INTEGER MaximumsSize, IN ULONG SectionPageProtection, IN ULONG
AllocationAttributes, IN HANDLE FileHandle OPTIONAL, IN PFILE OBJECT File
OPTIONAL)

Description of these arguments matches those ones from NtCreateSection.

Take a look at the Control Area structure

Segment control area (or just Control Area, CA) is a structure containing the information
necessary to perform I/O operations with a section. It's stored in the nonpaged pool and is
described by the following structure.
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typedef struct CONTROL ARFA
{
PSEGMENT Segment; //ptr to Segment
LIST ENTRY DereferencelList;
ULONG NumberOfSectionReferences;
ULONG NumberOfPfnReferences;
ULONG NumberOfMappedViews;
ULONG NumberOfSystemCacheViews;
ULONG NumberOfUserReferences;
union {
ULONG LongFlags;
MMSECTION FLAGS Flags;
} uar
PFILE OBJECT FilePointer; //ptr to FileObject
PEVENT COUNTER WaitingForDeletion;
USHORT ModifiedWriteCount;
USHOERT FlushInProgressCount;
ULONG WritableUserReferences;
} CONTROL AREA, *PCONTROL AREA;
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Control Area contains all the necessary data to perform I/O operations with the section.

e Pointer to a Segment containing information from the PE file header and a PPTE array.

e Pointer to a File Object describing mapped file that will be used for I/O operations.
e An array of subsections, which is located after the CA structure in virtual memory,
containing the necessary data to calculate file offsets.

The Control Area structure contains the flags that indicate what kind of data is addressed by
the section. When the VMM creates a CA object for an executable file using
MiCreateImageFileMap, its size is equal to the size of the CA structure, plus the size of one
Subsection structure multiplied by the number of subsections (i e number of PE sections + 1
for PE header). It's important to note that all _ SUBSECTION structures are located
immediately after the Control Area and their number is stored in the NumberOfSubsections

field. The subsections of one section (Control Area) are linked in the list via .NextSubsection.

The !ca comment of WinDbg prints information about Control Area.
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0: kd> !ca 81b85248

Controlhrea @ 851bB85248
Segment el6ced40
Section Ref 0
User Ref 2

File Object 81b8ac70

Flags (91000a0) Image

Flink 00000000 Blink 00000000
Pfn Ref e Mapped Views 2
WaitForDel 0 Flush Count 0
ModWriteCount 0 System Views 0

File DebugSymbolsLoaded HadUserReference Accessed

File: \WINDOWS\system32\regapi.dll -> described file

Segment @ el16c6440

ControlArea 81b85248 BasedAddress 7Tebc0000

Total Ptes £

WriteUserRef 0 sizeofsSegment f000 -> size of the _SEGMENT structure
Committed 0 PTE Template 8604Z2c3e

Based Addr T76bc0000 Image Base ]

Image Commit 1 TImage Info elécée4bd

ProtoPtes

eléc€478 -> ptr to PPTE table

SizeOfSegment = sizeof (SEGMENT) + (sizeof (MMPTE}

Subsection 1 @ 81b85278
ControlArea 81b85248
Base Pte el6ce478
Flags 11

Subsection 2 @ 81b85298
ControlArea 81b85248
Base Pte elécedic
Flags 31

Subsection 3 @ 81b852b8
ControlArea 81b85248
Base Pte el6c64al
Flags 51

Subsection 4 @ 81b&52d8
ControlArea 81b85248
Base Pte el6cbdac
Flags 11

Subsection 5 @ 81b852f8

ControlArea 81b85248
Base Pte elécedbl
Flags 11

Starting Sector
Ptes In Subsect
Sector Offset

Starting Sector
Ptes In Subsect
Sector Offset

Starting Sector S5a
1 Unused Ptes
0 Protection

Ptes In Subsect
Sector Offset

Starting Sector 5b
1 Unused Ptes
0 Protection

Ptes In Subsect
Sector Offset

{Segment->PrototypePte

* ((ULONG)NumberOQfPtes - 1)) + sizeof (SECTION IMAGE INFORMATION)

0 Number Of Sectors
1 Unused Ptes
0 Protection

2 Number Of Sectors
b Unused Ptes
0 Protection

Number Of Sectors

Number Of Sectors

Starting Sector 5d Number Of Sectors

Ptes In Subsect
Sector Offset

1 Unused Ptes
0 Protection

&Segment—>ThePtes[0])

We can also explore these structures manually for the first three subsections.
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0: kd> dt

_CONTROL_AREA 81b85248

2 nt! CONTROL AREA
3 +0x000 Segment : OxelécE440 SEGMENT
4 +0x004 DereferencelList : LIST ENTRY [ 0x0 - 0x0 ]
G +0x024 FilePointer : 0x81b8ac70 FILE OBJECT
7 +0x028 WaitingForDeletion : (null)
g8 +0x02¢c ModifiedWriteCount : 0
9 +0x02e NumberOfSystemCacheViews : 0
11 0: kd> dt SUBSECTION 81b85248+30
1Z nt! SUBSECTION
13 +0x000 ControlArea : OxB1bB85248 CONTROL AREA
14 +0x=004 u :  unnamed
15 +0x008 StartingSector : 0
16 +0x00c NumberOfFullSectors : 2
17 +0x010 SubsectionBase : Oxeléce478 _MMPTE
18 +0x014 UnusedPtes : 0
19 +0x018 PtesInSubsection : 1
200 +0x01lc NextSubsection : OxB1bB52%8 SUBSECTION —>next
22 0: kd> dt SUBSECTION 81b85248+30+20 //0x81bB85298
23 mnt! SUBSECTION
24 +0x000 ControlArea : O0xB81bB85248 CONTROL AREA
25 +0x004 u :  unnamed
26 +0x008 StartingSector : 2
277 +0x00c NumberOfFullSectors : 0x58
28 +0x010 SubsectionBase : Oxelécéd7c MMPTE
29 +0x2014 UnusedPtes : 0
3C +0x018 PtesInSubsection : 0xb
31 +0x01lc NextSubsection : OxB81b85Zb8 SUBSECTION
33 0: kd> dt SUBSECTION 81b85248+30+20+20 //0x81b852b8
34 mnt! SUBSECTION
35 +0x000 ControlArea : 0xB81bB85248 CONTROL ARERA
36 +0x004 u :  unnamed
37 +0x008 StartingSector : Ox5a
38 +0x00c NumberOfFullSectors : 1
39 +0x010 SubsectionBase : Oxeléced4ad _MMPTE
40 +0x014 UnusedPtes : 0
41 +0x018 PtesInSubsection : 1
42 +0x01lc NextSubsectiocon : 0xB81b852d8 SUBSECTION

Further, we'll discuss this output in more detail

As it was mentioned earlier, the FILE_ OBJECT structure has a very important structure
called _SECTION_OBJECT_POINTERS. This structure addresses two CAs, one for a binary
mapping type and second if the file is mapped as executable (the same file can be mapped as
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both binary and executable). These CAs point to different Segments with their own PPTE
tables. This structure is maintained by the FSD.

Subsections are allocated in virtual memory strongly after the CA structure. For example, if
the Control Area describes executable view, then ControlArea = ExAllocatePoolWithTag
(NonPagedPool, sizeof(CONTROL_AREA) + (sizeof(SUBSECTION) * SubsectionsAllocated),
1CmM').

A few words about Subsections

Subsection (_SUBSECTION) is a data structure containing the necessary information to
calculate file offsets for the mapped file using the PPTEs. In case of a binary mapping type,
there's only one subsection, but if the file is mapped as executable, then there're as many
sections as there are in the executable. Since all the PTEs describing this subsection will have
the same page protection bits (copy-on-write, read only, etc), it would be logically to
maintain one data structure for all these PTEs. This data structure is called Subsection. All
PPTEs point to the same corresponding subsection for both binary and executable mapping
types. Moreover, the subsections contain the starting sector of the beginning of the PE's
section. It's taken from the PE header as Raw_section_ offset/SECTOR_SIZE. Also the
subsection stores a pointer to the first PPTE in the segment's PPTE table and number of
PTEs for this subsection (i e the number of virtual pages for this PE section, its VirtualSize
rounded to a multiple of PAGE_SIZE). Having the address of the structure (executable
mapping type), we can easily calculate the offset in the PE file, which this PPTE describes (as
a distance between the base and current PTEs). If Pte is a pointer to PPTE, then the formula
is.

(((PUCHAR)Pte - (PUCHAR)Subsection->SubsectionBase) / sizeof(PTE)) << PAGE_SHIFT
+ Subsection->StartingSector * SECTOR_SIZE

or for x86

(((PUCHAR)Pte - (PUCHAR)Subsection->SubsectionBase) / 4) << 12 + Subsection-
>StartingSector * SECTOR_SIZE

If Subsection is a ptr to the subsection, then the first PTE that describes it is FirstPte =
&Subsection->SubsectionBase[0], and it's boundary, LastPte = &Subsection-
>SubsectionBase[Subsection->PtesInSubsection]. I e if X - the address of a PE file's
subsection in virtual memory, then &Subsection->SubsectionBase[0] <= Pte < &Subsection-
>SubsectionBase[ Subsection->PtesInSubsection].
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Binary mapping type

FileObject. DataSectionObject (pCA)

Control Area 1

Subsection

Executable mapping type

FileObject.SectionObjectPointers

FileObject.ImageSectionObject (pCA)

Control Area 2

PE Hdr Subsection 1

Section 1

Subsection 2
(executable) ubsection

Section 2
(executable)

(data) ubsection
Section 4

(reloce | Subsections
Section 2

{rsrc)

Subsection 3

Exploring the Segment structure

Unlike the Control Area structure that is designed to perform I/O operations with a file, the

Segment stores information about a PE file that was taken from its PE header. In case of a
binary file, this data isn't used. According to its purpose, a Segment also stores the Proto-PTE
table (array) that addresses the offsets from the beginning of the mapped file through the
Subsection structures. For example, if the VMM needs to load file data from the mapped file
into virtual memory, it locates the corresponding Proto-PTE entry in the Segment table via

not valid hardware PTE, which caused a page fault, from the page table. Next, using the
Control Area structure and the calculated file offset, the VMM reads data from the file into

virtual memory.
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MmCreateSection creates segments using the following functions. It happens only if the file
is mapped for the first time, otherwise the function gets a pointer to it via FileObject. Note
that no matter how many sections have been created for the file object, there's always only
one segment structure per type of mapping (binary, executable) for all of them. The same
applies to Control Area structures, there's only one Control Area per type of mapping
regardless of the number of created sections.

NTSTATUS MiCreateImageFileMap (IN PFILE_OBJECT File, OUT PSEGMENT Segment)

NTSTATUS MiCreateDataFileMap (IN PFILE_OBJECT File, OUT PSEGMENT *Segment,
IN PUINT64 MaximumsSize, IN ULONG SectionPageProtection, IN ULONG
AllocationAttributes, IN ULONG IgnoreFileSizing)

As you can see MiCreateImageFileMap accepts fewer arguments, because it reads all the
necessary information from the PE header of the executable file to be mapped. Description of
other arguments you can find in NtCreateSection.

The following structure describes Segment.

typedef struct _SEGMENT
{
struct _CONTROL AREA *ControlArea;
ULONG TotalNumberOfPtes;
ULONG NonExtendedPtes;
ULONG Spare(;

S I T Y S I T s T

g8 UINTE64 SizeOfSegment;
: MMPTE SegmentPteTemplate;

11 union

12 {

13 SIZE T ImageCommitment; // for image-backed sections only

14 PEPROCESS CreatingProcess; [/ for pagefile-backed sections only
15 } ul;

17 unicn

18 {

19 PSECTION IMAGE INFORMATION ImageInformation; // for images only
20 PVOID FirstMappedVa; // for pagefile-backed sections only
21 } ou2;

23 PFMMPTE PrototypePte;
24 MMEPTE ThePtes[MM PROTO PTE ALIGNMENT / PAGE_SIZE];
25 } SEGMENT, *PSEGMENT;

e ControlArea - pointer to the corresponding CA.

e TotalNumberOfPtes - roughly mapped_ file_size/PAGE_SIZE.

* SizeOfSegment - size of the structure in bytes. MiCreateImageFileMap calculates it
as SizeOfSegment = sizeof(SEGMENT) + (sizeof( MMPTE) *
((ULONG)TotalNumberOfPtes - 1)) + sizeof(SECTION IMAGE_INFORMATION).
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e PrototypePte - pointer to an array of PPTE. In fact, it's NewSegment->PrototypePte =
&NewSegment->ThePtes[0].
e ThePtes - an array of PPTE, PPTE page table.

Perhaps the following image gives you a better understanding.

Section’s data IfO

Section 1

Mapped File
(Executable, Control Area Segment

Physical)

Section 2

PPTE Table

Page Table of Process 2
with Section 2

Page Table of Process 1
with Section 1

I |
f |
I |

Behind the curtain of Section PTEs

As it was mentioned many times earlier, PPTEs and hardware PTEs pointing to them are key
things to understand the virtual addresses translation concept for the mapped sections
properly. The difference between them is that the first is stored in the Segment object, while
the second in the process's page table (hardware PTE). Both can be in two major states - valid
and invalid (P bit in the structure). Zeroed bit means that the mapped page is absent in
physical memory and signals the VMM that its content should be read from disk. If the P bit
is true, this virtual page is resident in physical memory and no additional actions are
required from the VMM. The invalid PTE has a flag signaling that this PTE points to PPTE, i
e belongs to the memory mapped file. Once a thread tries to access an invalid memory page, a
page fault exception occurs and the VMM exception handler analyzes the PTE to learn what
kind of pages it describes. There are several types of invalid PTEs, but we won't discuss this
topic here. Also note that in case of a resident virtual page the VMM stores a pointer to PPTE
and its value in the PFN database. Let's take a look at the format of these structures. You can
the format of the PTE pointing to PPTE in the following pic.
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31 I 0 o 8 7 1 0

PTE index (bits 7-27) 1 PTE index (bits 0-6) 0

L Valid

— P Prototype

typedef struct MMPTE FPROTOTYPE
{
ULONG Valid : 1;
ULONG ProtoAddressLow : 7;
ULONG ReadOnly : 1; // read only access
ULONG WhichPool : 1;
ULONG Prototype : 1;
ULONG ProtoAddressHigh : 21;
S } MMPTE PROTOTYPE;

[ T Y S 1% T L T S

]

(o]

Once you get the ProtoIndex, you can calculate the PPTE address with this formula:
PrototypePteAddress = MmPagedPoolStart + Prototypelndex << 2.

Below you can see PPTE format.

31 30 1 0 6 35 1 0

P SubsectionAddressHigh P Protection bits SubsectionAdd v
ressLow

— Prototype

typedef struct _MMPTE SUBSECTION {
ULONG Valid : 1;
ULONG SubsectionAddressLow : 4;
ULONG Protection : 5;
ULONG Prototype : 1;
ULONG SubsectionfAddressHigh : 20;
ULONG WhichPool : 1;

} MMPTE SUBSECTION;

[ T O R T % T ]

]

o o

SubsectionAddress = MmSubsectionBase + Prototypelndex << 3. MmSubsectionBase is
usually equal to MmNonPagedPoolStart, becausethe WhichPool bit is usually set to 1.
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Now, using our knowledge, we can put all the pieces together and make a complete picture of

the actions for getting file data when a thread tries to access a virtual page belonging to a

mapped file.

Calculate Proto-PTE

address

Calculate file offset [LSN)

A little practice

#PF occured

Locate pointer to PTE

PTE pointing to
PPTE

MmPagedPoolStart + Prototypelndex =< 2

Proto-PTE
(Segment)

MmNeonPagedPoolStart + Prototypelndex << 3 Calculate pointer to subsect

Subsection
(Control Area)

te - SubsectionbBase)] / sizeo << + startingSector
((pP Sub ionBase) [ si f(PTE)) PAGE_SHIFIT 5 ingS * SECTOR_SIZE

File offset

(LSN)

Let's get to the Proto-PTE table. Take a random process, dump its basic information and go

to the table.
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> !process 0 0

3 PROCESS ffffcalcabb485c0

4 SessionId: 0 Cid: 07d0 Peb: ef0697b000 ParentCid: 0338

5 DirBase: 13622000 ObjectTable: ffffb%81lce2b7380 HandleCount: 149.
G Image: VSSVC.exe

% > l'handle 0 3 ffffcalcabb485ch

10 0030: Object: ffffb981cB8277a50 GrantedAccess: 00000003 (Inherit) Entry: £fffb981ce3c70cO
11 Object: ffffb981c8277a50 Type: (ffffcalcaBc71lc50) Directory

1z ObjectHeader: ffffb9%81c8277a20 (new version)

13 HandleCount: 43 PointerCount: 1407269

14 Directory Object: ffffb%81c7cl€b20 Name: KnownDlls

16 Hash Address Type Name

18 00 f£fffb981cB8287cl0 Section kernel3Z.dll

20 > lobject ff£ffb981c8287cl0

22 Object: ffffb981cB287cl0 Types: (ffffcalcaBdladal) Section

23 ObjectHeader: ffffb981cB8287bel (new version)

24 HandleCount: 0 PointerCount: 1

25 Directory Object: ff£ffb981c8277a50 MName: kernel32.d11

> dt _SECTION ffffb981c8287cl0 -rl

nt! SECTION

+0x000 SectionNode : _RTL BALANCED NODE

+0x018 StartingVpn : 0

+0x020 EndingVpn : 0

+0x028 ul : <unnamed-tag>
+0x000 ControlArea : 0xffffcalc'aa500880 CONTROL AREA
+0x000 FileObject : 0xffffcalc aa%00880 FILE OBJECT

+0x2000 RemoteImageFileObject : 0y0
+0x2000 RemoteDataFileObject : 0Oy0
+0x030 Size0fSecticn : Oxae000

4z > lca Oxffffcalc*aa900880

43

44 cControlArea @ ffffcalcaa200880

45 Segment ffffb981cB297cb0 Flink ffffcalcabb4d230 Blink ffffcalcaabl%e00
46 Section Ref 1 Pfn Ref 6f Mapped Views 2a
47 User Ref 2b WaitForDel 0 Flush Count ats
48 File Object £fffcalcaa%900c90 ModWriteCount 0 System Views 348f

49 WritableRefs c0000b
] Flags (al) Image File

\Windows\System32\kernel32.d1l1l

Segment @ f££ffb9%81c8Z297chbl

ControlArea ffffcalcaab00880 BasedAddress 00007ffbcbe40000
Total Ptes ae
Segment Size 2ael00 Committed 0
Image Commit 2 Image Info fEffb981cB257cfl
ProtoPtes fEffb981cT7£24a90

Flags (c4820000) ProtectionMask
> dg £fffb981c7£24a90
ffffb981 c7£24a90 8a000000*37295121 00000000 2c624860

ffffbh981 c7f24aa0 02000000 2c625121 0a000000°2ce26l21
fEffb981 c7f24ab0 0a0000002c627121 0a000000°2c628121 -> Subsections addresses (offsets)
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We can go a bit deeper and calculate the offsets manually. To explore these structures it's
better to take information from the cache slots as in the case of usual user-mode processes,
the kernel can delay the creation of the Proto-PTE table until a thread addresses the mapped
file data. I got a list of the cache slots on my system and select one describing the registry
hive file NTUSER.DAT. Since it's a data file, there's only one subsection for its Control Area.

Vacbh #186 0x81936170 —> 0Oxc7080000
File: 0xB81749818
Offset: 0x00080000

\Documents and Settings\Art\NTUSER.DAT

We can see that this cache slot maps NTUSER.DAT with offset 0x80000 by address Oxc7080000.

=1 & N = W o=

0: kd> !pte 0xc7080000

VA c7080000
PDE at c0300c70 BPTE at CO031c200
contains 01CF0963 contains 0554A921
pfn 1cf0 -G-DA——EWEV pfn 5543 -G——A—EKREV

|l el
o W o

According to the PTE content, it's wvalid, this means that we can restore its original PTE
pointing to the PPTE from the PFN database.

;
=l @ N W o =

0: kd> !pfn 554a
PFN 0000554A at address 8107FEFO
flink 000018Cc8 ©blink / share count 00000001 pteaddress E15B7208
reference count 0001 Cached color O
restore pte B86D2Z04CE containing page 004%€6E Active =
Shared

w

1oy 0o Wk O W

We'wve got PPTE address E15B7208 and its original content 86D204CE. Translate it to the
subsection address and further we can get to the Segment and Control Area structures with formula
SubsectionAddress = MmNonPagedPoolStart + PrototypelIndex << 3.

5 86D204CE = 1 00001101101001000000 1 00110 0111 O

| |

C | |->is ptr to subsection
|->is mapped file

[PV ST G T G T ST G T T O T oG T S T S T

000011011010010000000111 = DA407 * B8 + 81181000 = 6D2038 + 81181000 = 81853038

4

15/27



Print the subsection.

0: kd> dt _subsection 81853038
) nt! SUBSECTION
39 +0x000 ControlArea : Ox81853008 _CONTROL_ARERAR

40 +0x004 u : _ unnamed

41 +0x008 StartingSector =

42 +0x00c NumberOfFullSectors : 0x100

43 +0x010 SubsectionBase : OxelSb7008 MMPTE

44 +0x014 UnusedPtes ]

45 +0x018 PtesInSubsection : 0x100

46 +0x01lc MextSubsection : (null)

47

48 And

45

50 +0x004 u : _ unnamed

51 +0x000 LongFlags : Oxeld

S5 +0x000 SubsectionFlags : MMSUBSECTION FLAGS

53 +0x000 ReadOnly : Owy0

54 +0x000 ReadWrite : 0Oy0

55 +0x000 SubsectionStatic : 0Oy0

56 +0x000 GlobalMemory : Oy0

57 +0x000 Protection : 0y00110 (O0x6) — MM EXECUTE READWRITE
+0x000 LargePages : 0y0
+0x000 StartingSector4132 : 0y0000000000 (0)
+0x000 SectorEndOffset : Oy000000000000 (0)

™ Ty

Print the control area.

64 0: kd> dt _control_area 0x81853008

65 nt! CONTROL_AREA

66 +0x000 Segment : Oxel55%bal _SEGMENT

67 +0x004 Dereferencelist : LIST_ENTRY [ Ox0 - O0x=0 ]

+0x00c NumberOfSectionReferences : 1

69 +0=x010 NumberOfPfnReferences : 0Oxeb

70 +0x014 NumberOfMappedViews : 4

71 +0x018 MumberOfSubsections : 1 // The view is described by one subsection (binary file)
+0x01la FlushInProgressCount : 0

+0x01lc NumberOfUserReferences : 0

nods B

+0=020 u : _ unnamed
+0x024 FilePeointer : 081749818 FILE OBJECT
+0x028 WaitingForDeletion : (null)

+0x02c ModifiedWriteCount : 0
+0=x02e NumberOfSystemCacheViews : 4

Now we can calculate the file offset starting from which the file is mapped to the cache slot
using this formula.

FileOffset_LSN = (((PUCHAR)Pte - (PUCHAR)Subsection->SubsectionBase) / 4) << 12 +
Subsection->StartingSector * SECTOR_SIZE

(E15B7208 - E15B7008) / 4 *1000 + 0 = 80000, this value you can see in the VACB structure
above (Offset: 0x00080000).

Here's another example.
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Now look at a more interesting case with PE files, Control Area of which has more than one
subsection (one Subsection per one PE subsection). We can simplify our task and skip the
first steps, starting with Control Areas. !memusage command can help us.

[ Y S W T o Y S

We can see the addresses of the Control Area structures in the first column. Print it for

Vacb #221 0x819364b8 -> 0xc8900000
File: 0x81905d10
Offset: 0x004c0000

\NSMEt

ks we can see this VACE structure describes the SMft file, which was

mapped to the chache slot at 0xcB8300000.

0: kd> !pte 0xc8900000
VA cB8900000

PDE at c0300cE8 PTE at CO0322400
contains 01CF6963 contains 03AF5921
pfin lcfé —-G-DA——EWEV pfn 3af5 -G-—-A—EKREV

0: kd> !pfn 3afb
PFN 0O0003AFS5 at address 810586F8

flink 00001717 blink / share count 00000001 pteaddress E1445300
reference count 0001 Cached color 0O
restore pte B7CCE4C2 containing page 0036F2 Active

Shared

PPTE address is E1449300 u ero mcxomHoe cofgepsmmos — B7CCE4C2.

87cce4c2 = 1 00001111100110001100 1 00110 0001 O
000011333001100011000001 = F98C1 * B8 + 81181000 = 8154De0S8

dt subsection 8194De08
nt! SUBSECTION

+0x000 ControlArea : 0xB8194d5d8 _CONTROL_AREA
+0x004 u : _ unnamed

+0x008 StartingSector = ([

+0x00c NumberQfFullSecteors : 0x1000

+0x010 SubsectionBase : Oxel1448000 MMPTE

+0x014 UnusedPtes : 0

+0x018 PtesInSubsection : 0x1000

+0x01lc NextSubsection : 0xB818dlelB8 SUBSECTION

Calculate the offset with ocur formula (E1449300 — =1448000) / 4

81783448 g4 0 0 0 1] 0
8185bd20 ] 96 0 0 1] 0
817abglsg 444 128 0 340 1] 0
81783148 12 0 0 0 1] 0

oleg2.dll.

0=004cC0000.

mapped file( localspl.dll )
mapped file( drw50009.vdb )
mapped file({ ole32.dll )
mapped file( pjlmon.dll )
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0: kd> !ca 817abB818

3 ControlArea @ 817ab818
- Segment el72eaal Flink 00000000 Blink 00000000
5 Section Ref Pfn Ref 8f Mapped Views 13
€ User Ref WaitForDel 0 Flush Count 0
7 File Object 81847dal ModWriteCount 0 System Views 0
9 Flags (%0000a0) Image File HadUserReference Accessed
1C |
11 |->the file mapped as image
13 File: \WINDOWS\system32%ole32.dll
14
15 Segment @ e172eaal
16 ControlArea 817ab818 BasedAddress 7740000
17 Total Ptes 13d
18 WriteUserRef 0 SizeOfSegment 134000
19 Committed 0 PTE Template 862Zafc3a
200 Based Addr 77420000 Image Base 1]
21 Image Commit 7 Image Info el72efdl
22 ProtoPtes el7Zeads
24
25 Subsection 1 @ 817ab84s
26 ControlArea 817ab818 Starting Sector 0 MNumber Of Sectors 2
27 Base Pte el72ead8 Ptes In Subsect 1 TUnused Ptes 1]
28 Flags 11 Sector 0ffset 0 Protecticn 1
3 Subsection 2 @ 817ab86s
31 ControlArea 817ab818 Starting Sector 2 Number Of Sectors BB
32 Base Pte el72eadc Ptes In Subsect 11f TUnused Ptes 0
33 Flags 31 Sector Offset 0 Protecticn 3
34
35 Subsection 3 @ 817abg88
36 ControlArea 817ab818 Starting Sector 8fa MNumber Of Sectors 30
37 Base Pte el72=ef538 Ptes In Subssct & TUnused Ptes 0
38 Flags 31 Sector Offset 0 Protection 3
= Subsection 4 @ 817abB8al
41 ControlArea 817ab818 Starting Sector %92a MNumber Of Sectors 33
42 Base Pte el72ef70 Ptes In Subsect 7 TUnused Ptes 1]
3 Flags 51 Sector Offset 0 Protecticn 5
44
5 Subsection 5 @ 817abici
46 ControlArea 817ak818 Starting Sector 95d HNumber Of Sectors c
47 Base Pte el72ef8c Ptes In Subsect 2 TUnused Ptes 0
48 Flags 11 Sector Offset 0 Protecticn 1
45
5 Subsection &€ @ 817abied
51 ControlArea 817ab818 Starting Sector 969 MNumber Of Sectors 659
52 Base Pte el72=f%4 Ptes In Subsect e TUnused Ptes 0
53 Flags 11 Sector Offset 0 Protection 1
54
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For clarity, copy the results to the table. If we open the PE file in the Cerbero PE Insider tool,
we'll see that it has five sections. Note that the first subsection is allocated for the PE header.

1 Hdr

2 text

.orpc
4 .data

5 .rsrc

6 .reloc

Starting

sector

§fa

92a

95d
969

Information from the Subsections

Number

of sectors

818
30

33

69

Number of
PTEs in
subsection
1

11f
6

Protection

MM _READONLY
MM _EXECUTE_READ
MM _EXECUTE_READ

MM_WRITECOPY

MM_READONLY
MM_READONLY

Raw

offset

0
400
11F400

125400

12BA00
12D200

Information from the PE header

Raw Size

11£000
6000

6600

1800
D200

Virtual

Size

1000

11lef3e

SFOE

69FC

17F8
DOD4

Protection

EXECUTE/READ
EXECUTE/READ

INIT DATA/READ/
WRITE
INIT DATA/READ
INIT/DISCARD/
READ

e We can see that the subsections number 2-3 are executable and match the PE sections
.text and .orpc. This means that they address the PPTEs with code sections. The 4th
subsection describes global data and has the copy-on-write protection. The rest are only
available for read access.

e The first subsection describes the file header and starts at offset 0. On disk, the PE
header fits in two sectors and occupies one page of virtual memory. Thus, it can be
described by one PPTE.

e The second subsection describes the first PE file's code section. It starts from the
second sector (0x400 / SECTOR_SIZE == 2). The virtual size of this section is
0x11EF5E, i e rounding it up to a multiple of the page size, 0x11EF5E + 0xA2 =
0x11Fooo0 / PAGE_SIZE = ox11F. This value matches the number of PTEs in the
subsection. We can calculate number of sectors for the section from the header Raw
size, 0x11F000 / 200 = 0x8F8 that equals the number of sectors for this section.

e The third section also contains code and starts with sector number 0x11F400 / 0x200 =
0x8FA. The size is 0x6000 bytes (in this case we take the physical size as it larger than
virtual), 0x6000/0x1000 = 6 PTEs.

e The 4th section starts from 0x125400 / 0Xx200 = 0x92A, the size 0x7000 / 0X1000 =7
PTEs.

e The 5th section starts from 0x12BA00 / 0x200 = 0x95D, pazmep 0Xx2000 / 0X1000 = 2
PTEs.

e The 6th, 0x12D200 / 0x200 = 0x969, pazmep 0XE000 / 0x1000 = OXE PTEs.

Let's check out the formula mentioned above in practice. Take the third subsection, which

describes the ole32.dll section starting at offset 0x8FA.

19/27



1 0: kd> dt _subsection 817abB888 SubsectionBase
nt!_ SUBSECTION
+0x010 SubsectionBase : 0xel72Zef58 MMPTE

Get content of the first PPTE that describes this section.

oo e L B

7 0: kd> dd 0Oxel72ef58 11
8 el72ef58 0c779121

10 It's wvalid, then

12 0: kd> !pfn c779
13 PFN 0000C779 at address 8112B358

14 flink 00000€6E7 blink / share count 00000007 pteaddress E172EF58
15 reference count 0001 Cached color O

16 restore pte 862A8CE2 containing page 00BEBAS Active =

17 Shared

1% B862A8Cce2 = 1 00001100010101010001 1 00011 0001 O;
20 000011000101010100010001 = C5511 * & + 81181000 = 817ABB8B, got an address of our subsection.

22 Now having a pointer to the PPTE, we can get the file offset that it describes.
23 Use our formula,
24  (((PUCHAR)Pte - (PUCHAR)Subsection->SubsectionBase) / 4) << 12 + Subsection->StartingSector * SECTOR_SIZE.
25 (E172EF58 - OxE172EF58) = 0 + 8fa * 200 = 11F400, this walue matches the one located in the section header.
27 #define MM ZERO ACCESS // this value is not used.
28 #define MM READONLY
29 #define MM EXECUTE
0 #define MM EXECUTE READ
31 #define MM READWRITE
32 #define MM WRITECOPY
#define MM EXECUTE_READWRITE

£ // bit 2 is set if this is writable.
34 f#define MM EXECUTE WRITECOPY

1]
1
2
3
4
5
[
7

typedef struct MMSUBSECTION_ FLAGS {
unsigned Readonly : 1;

g unsigned Readwrite : 1;

39 unsigned SubsectionStatic : 1;

40 unsigned GlobalMemory: 1;

41 unsigned Protection : 5; //MM_* macros

42 unsigned Spare : 1;

43 unsigned StartingSector4132 : 10; J/ 2 %% (42412) == 4MB*4GBE == 16K TB
44 unsigned SectorEndoffset : 12;

45 } MMSUBSECTION FLAGS;
Dispatching #PF exceptions for mapped files

As we know the I/O Manager and VMM minimize the performance overhead by performing
most of their operations asynchronously and by demand. Probably Windows developers
don't know about this principle, because synchronous operations are default behavior for
Windows API while the situation with Native and kernel API is reversed. This principle also
applies to section objects. When MapViewOfFile Windows API returns control to the caller
thread, it doesn't mean that mentioned subsystems copy the file data to virtual memory for
RW just as if a thread modified the mapped file data in virtual memory, it doesn't mean that
these changes will be immediately flushed to the physical file. Instead, the VMM delays the
actual I/O operation until a thread of the process tries to access the file data by reading
virtual memory. Once it happened, the #PF exception occurs and the VMM initiates an I/O
operation to read file data into virtual memory. The common work in this case falls on the
shoulders of MiDispatchFault function.

There're several possible situations for the sections describing file-backed data. Note that the
section PPTE can be in the states inherent in a hardware PTE.
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e The PPTE is invalid and points to a subsection. In this case, the VMM needs to load the
corresponding file data from disk into physical memory. The
MiResolveMappedFileFault function is responsible for this, but an actual I/O
operations is initiated by MiDispatchFault.

e The PPTE is valid and points to a page frame. The VMM just need to fill the hardware
PTE with this frame number.

e The PPTE marked as copy-on-write.

MiDispatchFault calls MiResolveProtoPteFault passing it a pointer to PTE and PPTE.
MiResolveProtoPteFault works with PPTE as well as with usual PTE, because PPTE can be in
the same states as hardware PTE. The function starts by validating the PPTE, i e whether it's
located in physical memory or not.

if (TempPte.u.Hard.Valid)

2
3 //get a PFN from the PTE
+ PageFrameIndex = MI_GET PAGE FRAME FROM PTE (&TempPte);
5 //get a PFN item from the database
[ Pfnl = MI_PFN_ELEMENT (PageFrameIndex);
7 //increment reference count (share count) of the PTE pointing to the PPTE array
8 Pfnl->u2.ShareCount += 1;
return MiCompleteProtoPteFault (StoreInstruction,
10 FaultingAddress,
11 PointerPte,
12 PointerProtoPte,
13 0ldIrgl,

14 unk) ;

After checking the rights access to the page, the function checks the case when the PPTE is
marked as Demand Zero and its hardware PTE marked as copy-on-write. In this case, the
VMM resolves the fault by calling MiResolveDemandZeroFault and passing it a pointer to
real PTE. Further, MiResolveProtoPteFault makes the PPTE valid, it can be in the following
states: Demand Zero, Transition, Page File, Pagefile-backed, File-backed.
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(TempPte.u.Soft.Prototype == 1)

//File-backed

status = MiResolveMappedFileFault (PointerProtoPte,

EeadBlock,
Process,
0ldIrqgl);
}
else if (TempPte.u.Soft.Transition == 1) {
//Transition
status = MiResolveTransitionFault (Faultinglddress,
PointerProtoPte,
Process,
.e-)i
H
else if (TempPte.u.Soft.PageFileHigh == 0) {
//Demand Zero
status = MiResolwveDemandZeroFault (Faultingiddress,
PointerProtoPte,
Process,

.e-)i
}
else |
//Pagefile-backed
status = MiResolvePageFileFault (FaultingAddress,
PointerProtoPte,
CapturedPteContents,

-e-)r

MiResolveProtoPteFault and MiResolveMappedFileFault functions perform important
steps: reserve a page frame (physical page), initializes the corresponding entry in the PFN
database, prepare a MDL structure and a special ReadBlock structure for further disk read
operation. You can see the entire process in the following diagram.
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X = *ptr_file_view

A thread tries to access memory

Get data 8 mapped file data for the first time

IDT[OxE] handler is called | 2
7 The fault dispatched,
continue exectuion

MmaAccessFault

The fault resolved | 6 3 | Dispatch a page fault
MiDispatchFault
Check the kind of fault,
reserve a page frame,
prepare a MDL for 1/O 4 5 Read file data

prepare ReadBlock f /0

L MiResolveProtoPteFault

MiResolveMappedFileFault

Inside the Page Writers

In the last part of this blog post we're gonna discuss the Mapped Page Writer subsystem
(thread), which is a part of the Modified Page Writer subsystem (or just thread). At this point
we already know how the VMM and I/O manager read mapped file data to process's virtual
memory in order to provide access to it. But what about writing file data? As was mentioned
above, the VMM minimizes the performance overhead by performing its operations that
involve disk I/O by demand. That's why the actual read operation on a memory mapped file
only happens when a thread tries to access a file view and not when executing
MapViewOfFile.

The VMM has two system threads called MiModifiedPageWriter and MiMappedPageWriter.

In fact, MiModifiedPageWriter just creates MiMappedPageWriter thread and shifts the rest
of work to MiModifiedPageWriterWorker. These last two functions
(MiModifiedPageWriterWorker and MiMappedPageWriter) are two infinite loops that can
be called Modified Page Writer, because they implement all its functionality. The first one is
responsible for gathering information about modified pages belonging to the page file
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(MiGatherPagefilePages) and about modified pages belonging to the mapped files
(MiGatherMappedPages). It also adjusts the frequency of the flushing operations or how
often modified pages will be written to disk. The second thread takes the information
prepared by MiModifiedPageWriter Worker and performs the actual disk write operation
(for mapped files).

The main part of MiModifiedPageWriterWorker is an infinite loop with waiting on the
MiMappedPagesTooOldEvent event. This event can be set in several circumstances and
adjusts the frequency of performing flushing. To provide a fixed time frequency of flushing,
the VMM uses a timer object and a DPC object (MiModifiedPageWriterTimerDpc), i e the
DPC handler MiModifiedPageWriterTimerDispatch calls every time a timer expires. Since
this handler is executed with high IRQL DPC_DISPATCH (2, the scheduler level), the system
ensures its operation in privileged mode. The MmInitSystem function initializes this object
during the system startup and when MiModifiedPageWriterWorker need to gather dirty
memory pages for the first time, it sets this timer. The timer is set for 3 seconds.

KeInitializeDpc ( <—— MmInitSystem
gMiModifiedPageWriterTimerDpc,
MiModifiedPageWriterTimerDispatch,
NULL
)

=1 @ ol W M =

EeSetTimerEx ( <—— MiModifiedPageWriterWorker if MmMappedFileHeader.ListHead is empty
g8 &MiModifiedPageWriterTimer,
C MiModifiedPageLife,
1C 0,
11 gMiModifiedPageWriterTimerDpc
1z )
Forgot to mention that physical memory pages (frames) that were modified since the section
was mapped are called Dirty. The CPU sets this bit at the first write operation to the page.
Once the VMM processes this page in a certain way, it resets this bit. Without it, the VMM
wouldn't be able to track the changes made by the thread on the mapped page and

synchronize them with the file data on disk.

I 1

31 121 0 9 8 7 6 5 4 3 2 1 0
T P G D A
Page Base Address ¢ ? PLRELUlR|V
T T T S w

L » Dinty

For the convenience of flushing file data and, in order to reduce overhead,
MiMappedPageWriter doesn't flush every dirty page separately, instead,
MiGatherMappedPages gathers in the packet (MMMOD_WRITER_MDL_ENTRY) a set of
dirty frames that belong to the same section and are adjacent to this dirty frame. The
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MMMOD_WRITER_MDL_ENTRY structure describes a set of dirty PFNs that should be
written to disk. In fact, the VMM uses two MDL lists, one for a paging file and another for
sections. The pool of these MDL items is allocated in the NtCreatePagingFile function that is

responsible for creating page files. The same for memory mapped files -
MmMappedFileHeader.

As it was mentioned above, MiMappedPageWriter is responsible for initiating disk write

operation, here's its pseudocode, in which the details are omitted.

VOID

MiMappedPageWriter (
IN PVOID StartContext
)

[y

NTSTATUS Status;

PETHREAD CurrentThread;

I0 PAGING PRIORITY IrpPriority;

PMMMOD WRITER MDL ENTRY ModWriterMdlEntry;

1 s W

CurrentThread = PsGetCurrentThread ();

MEH O W o

EeSetPriorityThread (&CurrentThread->Tcb, 17); // LOW_REALTIME PRIORITY + 1

for(;:)
{

b
S O T ]

fus]

RernelMode,
FALSE,
NULL) ;

if (!IsListEmpty (sMmMappedPageWriterList)) // Make sure that the list isn't empty
{

dm e W R O

ModWriterMdlEntry = (PMMMOD_WRITER_MDL_ENTRY)RemoveHeadList (
sMmMappedPageWriterList) ;

o

//initiate disk write operation (flush section data)
Status = IoAsynchronousPageWrite (ModWriterMdlEntry->File, &ModWriterMdlEntry-—>Mdl,
&sModWriterMdlEntry-—>WriteOffset, MiWriteComplete, ModWriterMdlEntry,
IrpPriority, &ModWriterMdlEntry->u.IoStatus, &ModWriterMdlEntry->Irp) s

[PV T % S T PV U PV PV o T T O T O T O O T O R O T S S

B N T TS R O
-

W

Please take a look at the following diagram for understanding the entire process.

KeWaitForSingleObject (sMmMappedPageWriterEvent, // This event is set by MiGatherMappedPages
WrVirtualMemory, // when it initialized the next ModWriterMdlEntry
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r

However, a thread can force the VMM to write modified data to disk immediately. Windows
API provides applications with the FlushViewOfFile function. The VMM's internal function
MiFlushSectionInternal is responsible for flushing section data and calls
IoAsynchronousPageWrite to perform disk write operation.

Instead of conclusion

Thank you for your attention and hope you enjoyed the blog post. Windows Sections is quite
a difficult topic, especially, for beginners, because you should already have an idea of other
Windows kernel subsystems to understand it properly.

If you have any comments or remarks, please let me know and feel free to contact. I'm going
to cover several other topics on the Windows VMM internals such as the PFN database,
hyperspace and virtual address translation.
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