
4/9/24, 1:39 AM Peeling back the curtain with call stacks — Elastic Security Labs

https://www.elastic.co/security-labs/peeling-back-the-curtain-with-call-stacks 1/19

Peeling back the curtain with call stacks
elastic.co/security-labs/peeling-back-the-curtain-with-call-stacks

Subscribe
12 September 2023•Samir Bousseaden
In this article, we'll show you how we contextualize rules and events, and how you can
leverage call stacks to better understand any alerts you encounter in your environment.

13 min read Security operations, Security research, Detection science

Introduction

Elastic Defend provides over 550 rules (and counting) to detect and stop malicious behavior
in real time on endpoints. We recently added kernel call stack enrichments to provide
additional context to events and alerts. Call stacks are a win-win-win for behavioral

https://www.elastic.co/security-labs/peeling-back-the-curtain-with-call-stacks
https://www.elastic.co/security-labs
https://www.elastic.co/security-labs
https://www.elastic.co/security-labs/rss/feed.xml
https://www.elastic.co/security-labs/rss/feed.xml
https://www.elastic.co/security-labs/author/samir-bousseaden
https://www.elastic.co/security-labs/category/security-operations
https://www.elastic.co/security-labs/category/security-research
https://www.elastic.co/security-labs/category/detection-science
https://github.com/elastic/protections-artifacts/tree/main/behavior/rules
https://www.elastic.co/security-labs/upping-the-ante-detecting-in-memory-threats-with-kernel-call-stacks

4/9/24, 1:39 AM Peeling back the curtain with call stacks — Elastic Security Labs

https://www.elastic.co/security-labs/peeling-back-the-curtain-with-call-stacks 2/19

protections, simultaneously improving false positives, false negatives, and alert
explainability. In this article, we'll show you how we achieve all three of these, and how you
can leverage call stacks to better understand any alerts you encounter in your environment.

What is a call stack?

When a thread running function A calls function B, the CPU automatically saves the current
instruction’s address (within A) to a thread-specific region of memory called the stack. This
saved pointer is known as the return address - it's where execution will resume once the B
has finished its job. If B were to call a third function C, then a return address within B will also
be saved to the stack. These return addresses can be retrieved through a process known as
a stack walk, which reconstructs the sequence of function calls that led to the current thread
state. Stack walks list return addresses in reverse-chronological order, so the most recent
function is always at the top.

In Windows, when we double-click on notepad.exe, for example, the following series of
functions are called:

The green section is related to base thread initialization performed by the operating
system and is usually identical across all operations (file, registry, process, library, etc.)
The red section is the user code; it is often composed of multiple modules and provides
approximate details of how the process creation operation was reached
The blue section is the Win32 and Native API layer; this is operation-specific, including
the last 2 to 3 intermediary Windows modules before forwarding the operation details
for effective execution in kernel mode

The following screenshot depicts the call stack for this execution chain:

https://learn.microsoft.com/en-us/windows/win32/debug/capturestackbacktrace

4/9/24, 1:39 AM Peeling back the curtain with call stacks — Elastic Security Labs

https://www.elastic.co/security-labs/peeling-back-the-curtain-with-call-stacks 3/19

Here is an example of file creation using notepad.exe where we can see a similar pattern:

The blue part lists the last user mode intermediary Windows APIs before forwarding the
create file operation to kernel mode drivers for effective execution
The red section includes functions from user32.dll and notepad.exe, which indicate
that this file operation was likely initiated via GUI
The green part represents the initial thread initialization

Events Explainability

Apart from using call stacks for finding known bad, like unbacked memory regions with RWX
permissions that may be the remnants of prior code injection. Call stacks provide very low-
level visibility that often reveals greater insights than logs can otherwise provide.

As an example, while hunting for suspicious process executions started by WmiPrvSe.exe
via WMI, you find this instance of notepad.exe:

Reviewing the standard event log fields, you may expect that it was started using the
Win32_Process class using the wmic.exe process call create notepad.exe syntax.
However, the event details describe a series of modules and functions:

https://www.elastic.co/security-labs/hunting-memory
https://learn.microsoft.com/en-us/windows/win32/cimwin32prov/win32-process

4/9/24, 1:39 AM Peeling back the curtain with call stacks — Elastic Security Labs

https://www.elastic.co/security-labs/peeling-back-the-curtain-with-call-stacks 4/19

The blue section depicts the standard intermediary CreateProcess Windows APIs, while the
red section highlights better information in that we can see that the DLL before the first call to
CreateProcessW is wbemcons.dll and when inspecting its properties we can see that it’s
related to WMI Event Consumers. We can conclude that this notepad.exe instance is likely
related to a WMI Event Subscription. This will require specific incident response steps to
mitigate the WMI persistence mechanism.

https://learn.microsoft.com/en-us/windows/win32/wmisdk/commandlineeventconsumer

4/9/24, 1:39 AM Peeling back the curtain with call stacks — Elastic Security Labs

https://www.elastic.co/security-labs/peeling-back-the-curtain-with-call-stacks 5/19

Another great example is Windows scheduled tasks. When executed, they are spawned as
children of the Schedule service, which runs within a svchost.exe host process. Modern
Windows 11 machines may have 50 or more svchost.exe processes running. Fortunately,
the Schedule service has a specific process argument -s Schedule which differentiates it:

In older Windows versions, the Scheduled Tasks service is a member of the Network Service
group and executed as a component of the netsvcs shared svchost.exe instance. Not all
children of this process are necessarily scheduled tasks in these older versions:

4/9/24, 1:39 AM Peeling back the curtain with call stacks — Elastic Security Labs

https://www.elastic.co/security-labs/peeling-back-the-curtain-with-call-stacks 6/19

Inspecting the call stack on both versions, we can see the module that is adjacent to the
CreateProcess call is the same ubpm.dll (Unified Background Process Manager DLL)
executing the exported function ubpm.dll!UbpmOpenTriggerConsumer:

Using the following KQL query, we can hunt for task executions on both versions:

event.action :"start" and
process.parent.name :"svchost.exe" and process.parent.args : netsvcs and
process.parent.thread.Ext.call_stack_summary : *ubpm.dll*

4/9/24, 1:39 AM Peeling back the curtain with call stacks — Elastic Security Labs

https://www.elastic.co/security-labs/peeling-back-the-curtain-with-call-stacks 7/19

Another interesting example occurs when a user double-clicks a script file from a ZIP archive
that was opened using Windows Explorer. Looking at the process tree, you will see that
explorer.exe is the parent and the child is a script interpreter process like wscript.exe or
cmd.exe.

This process tree can be confused with a user double-clicking a script file from any location
on the file system, which is not very suspicious. But if we inspect the call stack we can see
that the parent stack is pointing to zipfld.dll (Zipped Folders Shell Extension):

Detection Examples

Now that we have a better idea of how to use the call stack to better interpret events, let’s
explore some advanced detection examples per event type.

4/9/24, 1:39 AM Peeling back the curtain with call stacks — Elastic Security Labs

https://www.elastic.co/security-labs/peeling-back-the-curtain-with-call-stacks 8/19

Process

Suspicious Process Creation via Reflection

Dirty Vanity is a recent code-injection technique that abuses process forking to execute
shellcode within a copy of an existing process. When a process is forked, the OS makes a
copy of an existing process, including its address space and any inheritable handles therein.

When executed, Dirty Vanity will fork an instance of a targeted process (already running or a
sacrificial one) and then inject into it. Using process creation notification callbacks won’t log
forked processes because the forked process initial thread isn’t executed. But in the case of
this injection technique, the forked process will be injected and a thread will be started, which
triggers the process start event log with the following call stack:

We can see the call to RtlCreateProcessReflection and RtlCloneUserProcess to fork the
process. Now we know that this is a forked process, and the next question is “Is this
common in normal conditions?” While diagnostically this behavior appears to be common
and alone, it is not a strong signal of something malicious. Checking further to see if the
forked processes perform any network connections, loads DLLs, or spawns child processes
revealed to be less common and made for good detections:

https://www.deepinstinct.com/blog/dirty-vanity-a-new-approach-to-code-injection-edr-bypass
https://learn.microsoft.com/en-us/windows/win32/sysinfo/handle-inheritance
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddk/nc-ntddk-pcreate_process_notify_routine_ex

4/9/24, 1:39 AM Peeling back the curtain with call stacks — Elastic Security Labs

https://www.elastic.co/security-labs/peeling-back-the-curtain-with-call-stacks 9/19

// EQL detecting a forked process spawning a child process - very suspicious

process where event.action == "start" and

descendant of
 [process where event.action == "start" and
 _arraysearch(process.parent.thread.Ext.call_stack, $entry,
 $entry.symbol_info:
 ("*ntdll.dll!RtlCreateProcessReflection*",
 "*ntdll.dll!RtlCloneUserProcess*"))] and

not (process.executable :
 ("?:\\WINDOWS\\SysWOW64\\WerFault.exe",
 "?:\\WINDOWS\\system32\\WerFault.exe") and
 process.parent.thread.Ext.call_stack_summary :
 "*faultrep.dll|wersvc.dl*")

// EQL detecting a forked process loading a network DLL
// or performs a network connection - very suspicious

sequence by process.entity_id with maxspan=1m
 [process where event.action == "start" and
 _arraysearch(process.parent.thread.Ext.call_stack,
 $entry, $entry.symbol_info:
 ("*ntdll.dll!RtlCreateProcessReflection*",
 "*ntdll.dll!RtlCloneUserProcess*"))]
 [any where
 (
 event.category : ("network", "dns") or
 (event.category == "library" and
 dll.name : ("ws2_32.dll", "winhttp.dll", "wininet.dll"))
)]

Here’s an example of forking explore.exe and executing shellcode that spawns cmd.exe
from the forked explorer.exe instance:

4/9/24, 1:39 AM Peeling back the curtain with call stacks — Elastic Security Labs

https://www.elastic.co/security-labs/peeling-back-the-curtain-with-call-stacks 10/19

Direct Syscall via Assembly Bytes

The second and final example for process events is process creation via direct syscall. This
directly uses the syscall instruction instead of calling the NtCreateProcess API. Adversaries
may use this method to avoid security products that are reliant on usermode API hooking
(which Elastic Defend is not):

process where event.action : "start" and

// EQL detecting a call stack not ending with ntdll.dll
not process.parent.thread.Ext.call_stack_summary : "ntdll.dll*" and

/* last call in the call stack contains bytes that execute a syscall
 manually using assembly <mov r10,rcx, mov eax,ssn, syscall> */

_arraysearch(process.parent.thread.Ext.call_stack, $entry,
 ($entry.callsite_leading_bytes : ("*4c8bd1b8??????000f05",
 "*4989cab8??????000f05", "*4c8bd10f05", "*4989ca0f05")))

This example matches when the final memory region in the call stack is unbacked and
contains assembly bytes that end with the syscall instruction (0F05):

https://www.ired.team/offensive-security/defense-evasion/using-syscalls-directly-from-visual-studio-to-bypass-avs-edrs

4/9/24, 1:39 AM Peeling back the curtain with call stacks — Elastic Security Labs

https://www.elastic.co/security-labs/peeling-back-the-curtain-with-call-stacks 11/19

File

Suspicious Microsoft Office Embedded Object

The following rule logic identifies suspicious file extensions written by a Microsoft Office
process from an embedded OLE stream, frequently used by malicious documents to drop
payloads for initial access.

4/9/24, 1:39 AM Peeling back the curtain with call stacks — Elastic Security Labs

https://www.elastic.co/security-labs/peeling-back-the-curtain-with-call-stacks 12/19

// EQL detecting file creation event with call stack indicating
// OleSaveToStream call to save or load the embedded OLE object

file where event.action != "deletion" and

process.name : ("winword.exe", "excel.exe", "powerpnt.exe") and

_arraysearch(process.thread.Ext.call_stack, $entry, $entry.symbol_info:
 ("*!OleSaveToStream*", "*!OleLoad*")) and
(
 file.extension : ("exe", "dll", "js", "vbs", "vbe", "jse", "url",
 "chm", "bat", "mht", "hta", "htm", "search-ms") or

 /* PE & HelpFile */
 file.Ext.header_bytes : ("4d5a*", "49545346*")
)

Example of matches :

Suspicious File Rename from Unbacked Memory

Certain ransomware may inject into signed processes before starting their encryption
routine. File rename and modification events will appear to originate from a trusted process,
potentially bypassing some heuristics that exclude signed processes as presumed false
positives. The following KQL query looks for file rename of documents, from a signed binary
and with a suspicious call stack:

4/9/24, 1:39 AM Peeling back the curtain with call stacks — Elastic Security Labs

https://www.elastic.co/security-labs/peeling-back-the-curtain-with-call-stacks 13/19

file where event.action : "rename" and

process.code_signature.status : "trusted" and file.extension != null and

file.Ext.original.name : ("*.jpg", "*.bmp", "*.png", "*.pdf", "*.doc",
"*.docx", "*.xls", "*.xlsx", "*.ppt", "*.pptx") and

not file.extension : ("tmp", "~tmp", "diff", "gz", "download", "bak",
"bck", "lnk", "part", "save", "url", "jpg", "bmp", "png", "pdf", "doc",
"docx", "xls", "xlsx", "ppt", "pptx") and

process.thread.Ext.call_stack_summary :
("ntdll.dll|kernelbase.dll|Unbacked",
 "ntdll.dll|kernelbase.dll|kernel32.dll|Unbacked",
 "ntdll.dll|kernelbase.dll|Unknown|kernel32.dll|ntdll.dll",
 "ntdll.dll|kernelbase.dll|Unknown|kernel32.dll|ntdll.dll",
 "ntdll.dll|kernelbase.dll|kernel32.dll|Unknown|kernel32.dll|ntdll.dll",
 "ntdll.dll|kernelbase.dll|kernel32.dll|mscorlib.ni.dll|Unbacked",
 "ntdll.dll|wow64.dll|wow64cpu.dll|wow64.dll|ntdll.dll|kernelbase.dll|
 Unbacked", "ntdll.dll|wow64.dll|wow64cpu.dll|wow64.dll|ntdll.dll|
 kernelbase.dll|Unbacked|kernel32.dll|ntdll.dll",
 "ntdll.dll|Unbacked", "Unbacked", "Unknown")

Here are some examples of matches where explorer.exe (Windows Explorer) is injected by
the KNIGHT/CYCLOPS ransomware:

Executable File Dropped by an Unsigned Service DLL

Certain types of malware maintain their presence by disguising themselves as Windows
service DLLs. To be recognized and managed by the Service Control Manager, a service
DLL must export a function named ServiceMain. The KQL query below helps identify
instances where an executable file is created, and the call stack includes the ServiceMain
function.

event.category : file and
 file.Ext.header_bytes :4d5a* and process.name : svchost.exe and
 process.thread.Ext.call_stack.symbol_info :*!ServiceMain*

https://www.bleepingcomputer.com/news/security/knight-ransomware-distributed-in-fake-tripadvisor-complaint-emails/

4/9/24, 1:39 AM Peeling back the curtain with call stacks — Elastic Security Labs

https://www.elastic.co/security-labs/peeling-back-the-curtain-with-call-stacks 14/19

Library

Unsigned Print Monitor Driver Loaded

The following EQL query identifies the loading of an unsigned library by the print spooler
service where the call stack indicates the load is coming from SplAddMonitor. Adversaries
may use port monitors to run an adversary-supplied DLL during system boot for persistence
or privilege escalation.

library where
process.executable : ("?:\\Windows\\System32\\spoolsv.exe",
"?:\\Windows\\SysWOW64\\spoolsv.exe") and not dll.code_signature.status :
"trusted" and _arraysearch(process.thread.Ext.call_stack, $entry,
$entry.symbol_info: "*localspl.dll!SplAddMonitor*")

Example of match:

https://attack.mitre.org/techniques/T1547/010/

4/9/24, 1:39 AM Peeling back the curtain with call stacks — Elastic Security Labs

https://www.elastic.co/security-labs/peeling-back-the-curtain-with-call-stacks 15/19

Potential Library Load via ROP Gadgets

This EQL rule identifies the loading of a library from unusual win32u or ntdll offsets. This
may indicate an attempt to bypass API monitoring using Return Oriented Programming
(ROP) assembly gadgets to execute a syscall instruction from a trusted module.

library where
// adversaries try to use ROP gadgets from ntdll.dll or win32u.dll
// to construct a normal-looking call stack

process.thread.Ext.call_stack_summary : ("ntdll.dll|*", "win32u.dll|*") and

// excluding normal Library Load APIs - LdrLoadDll and NtMapViewOfSection
not _arraysearch(process.thread.Ext.call_stack, $entry,
 $entry.symbol_info: ("*ntdll.dll!Ldr*",
 "*KernelBase.dll!LoadLibrary*", "*ntdll.dll!*MapViewOfSection*"))

This example matches when AtomLdr loads a DLL using ROP gadgets from win32u.dll
instead of using ntdll’s load library APIs (LdrLoadDll and NtMapViewOfSection).

https://www.kitploit.com/2023/06/atomldr-dll-loader-with-advanced.html

4/9/24, 1:39 AM Peeling back the curtain with call stacks — Elastic Security Labs

https://www.elastic.co/security-labs/peeling-back-the-curtain-with-call-stacks 16/19

Evasion via LdrpKernel32 Overwrite

The [LdrpKernel32(https://github.com/rbmm/LdrpKernel32DllName) evasion is an interesting
technique to hijack the early execution of a process during the bootstrap phase by
overwriting the bootstrap DLL name referenced in ntdll.dll memory– forcing the process to
load a malicious DLL.

library where

// BaseThreadInitThunk must be exported by the rogue bootstrap DLL
 _arraysearch(process.thread.Ext.call_stack, $entry, $entry.symbol_info :
 "*!BaseThreadInitThunk*") and

// excluding kernel32 that exports normally exports BasethreadInitThunk
not _arraysearch(process.thread.Ext.call_stack, $entry, $entry.symbol_info
 ("?:\\Windows\\System32\\kernel32.dll!BaseThreadInitThunk*",
 "?:\\Windows\\SysWOW64\\kernel32.dll!BaseThreadInitThunk*",
 "?:\\Windows\\WinSxS*\\kernel32.dll!BaseThreadInitThunk*",
 "?:\\Windows\\WinSxS\\Temp\\PendingDeletes*!BaseThreadInitThunk*",
 "\\Device*\\Windows*\\kernel32.dll!BaseThreadInitThunk*"))

Example of match:

https://github.com/rbmm/LdrpKernel32DllName

4/9/24, 1:39 AM Peeling back the curtain with call stacks — Elastic Security Labs

https://www.elastic.co/security-labs/peeling-back-the-curtain-with-call-stacks 17/19

Suspicious Remote Registry Modification

Similar to the scheduled task example, the remote registry service is hosted in svchost.exe.
We can use the call stack to detect registry modification by monitoring when the Remote
Registry service points to an executable or script file. This may indicate an attempt to move
laterally via remote configuration changes.

4/9/24, 1:39 AM Peeling back the curtain with call stacks — Elastic Security Labs

https://www.elastic.co/security-labs/peeling-back-the-curtain-with-call-stacks 18/19

registry where

event.action == "modification" and

user.id : ("S-1-5-21*", "S-1-12-*") and

 process.name : "svchost.exe" and

// The regsvc.dll in call stack indicate that this is indeed the
// svchost.exe instance hosting the Remote registry service

process.thread.Ext.call_stack_summary : "*regsvc.dll|rpcrt4.dll*" and

 (
 // suspicious registry values
 registry.data.strings : ("*:**", "*.exe*", "*.dll*", "*rundll32*",
 "*powershell*", "*http*", "* /c *", "*COMSPEC*", "*.*") or

 // suspicious keys like Services, Run key and COM
 registry.path :
 ("HKLM\\SYSTEM\\ControlSet*\\Services*\\ServiceDLL",
 "HKLM\\SYSTEM\\ControlSet*\\Services*\\ImagePath",
 "HKEY_USERS*Classes*\\InprocServer32\\",
 "HKEY_USERS*Classes*\\LocalServer32\\",
 "H*\\Software\\Microsoft\\Windows\\CurrentVersion\\Run*") or

 // potential attempt to remotely disable a service
 (registry.value : "Start" and registry.data.strings : "4")
)

This example matches when the Run key registry value is modified remotely via the Remote
Registry service:

4/9/24, 1:39 AM Peeling back the curtain with call stacks — Elastic Security Labs

https://www.elastic.co/security-labs/peeling-back-the-curtain-with-call-stacks 19/19

Conclusion

As we’ve demonstrated, call stacks are not only useful for finding known bad patterns, but
also for reducing ambiguity in standard EDR events, and easing behavior interpretation. The
examples we've provided here represent just a minor portion of the potential detection
possibilities achievable by applying enhanced enrichment to the same dataset.

