
1/21

CICADA8 August 30, 2024

Evil MSI. A story about vulnerabilities in MSI Files
cicada-8.medium.com/evil-msi-a-long-story-about-vulnerabilities-in-msi-files-1a2a1acaf01c

CICADA8

Hello everybody, my name is Michael Zhmailo and I am a penetration testing expert in the
MTS Innovation Center CICADA8 team.

https://cicada-8.medium.com/evil-msi-a-long-story-about-vulnerabilities-in-msi-files-1a2a1acaf01c
https://cicada-8.medium.com/?source=post_page-----1a2a1acaf01c--------------------------------
https://cicada-8.medium.com/?source=post_page-----1a2a1acaf01c--------------------------------
https://www.linkedin.com/in/mzhmo/
https://futurecrew.tech/cicada8

2/21

You have probably come across MSI files quite often. They are used by software
manufacturers to provide their programs. This format is more convenient than the standard
EXE format for the following reasons:

Ability to restore, install certain components
Data storage in well-structured tables that can be easily accessed via APIs
Easy distribution via SCCM, WEB endpoints

There may be various vulnerabilities inside MSI files, most of which will lead to privilege
escalation. These include both logical vulnerabilities: DLL/TypeLib/COM/Exe File/Script/etc
hijacking, PATH Abusing, and vulnerabilities of the MSI file format itself: Custom Actions
Abuse, abandoned credentials, privileged child processes.

You may have read about vulnerabilities in MSI files before:

These are great articles if you are just getting familiar with finding vulnerabilities inside MSI
files. Our article can also serve as a great starting point for learning more about this topic. In
addition, we have developed a tool called MyMSIAnalyzer that will make it easier to find
vulnerabilities inside MSI files. You should read this article if you want to learn more about
the insides of the MSI format and how the tool works.

MSI File Format

The MSI format itself is somewhat similar to SQL databases. Inside the MSI file there are
tables with various data. There is a relationship between the tables. And this table is
analyzed and used while installing MSI file.

https://github.com/CICADA8-Research/MyMSIAnalyzer

3/21

MSI File Format

I note that there are a lot of tables. We are interested in only a few of them. The full list of
tables is described here.

— a special table inside which resources used by the application (images, shortcuts,
icons, etc.) are located;
Each resource is associated with a specific functionality. Therefore, there is a , which is
linked to the Components Table through the ;
— a table that specifies which files should be installed on the system;
— table that contains information about the folder structure of the program to be
installed;

https://learn.microsoft.com/en-us/windows/win32/msi/database-tables

4/21

— table that contains actions to be performed during MSI file installation (create a
shortcut, create a registry key, write a value);
— actions that need to be performed during the installation process, however, they
cannot be performed through Windows Installer API, so third-party programs, DLL files,
cmd commands are used.

Collecting MSI files for analysis

Manually

The easiest way to locate all MSI files is to look in the C:\Windows\Installer folder. Here you
will definitely find all MSI files of programs installed on your computer.

Folder Contents #1

Folder Contents #2

Inside the folder you can find MSI files and other folders. Other folders often store various
resources that the MSI file needs. Their name is GUID. This GUID can be seen in the
IdentifiyingNumber field of the installed software product.

5/21

You can examine the installed programs and make a mapping using these commands:

wmic product identifyingnumber,name,vendor,version

List of the installed products

You can also use Powershell and add a filter by software.

Get-WmiObject - | ? { $_.Name -like } | select IdentifyingNumber,Name

Tools

Of course, it is more convenient to use automated tools to gather information and MSI files
itself.

— This tool can be used to search for msi files, then download them and then analyze
them directly on the attacker’s machine to detect privilege escalation vectors (can be
analyzed for privilege escalation vectors using, for example, our tool :));
— Great for extracting MSI files from SCCM. For example, from Distribution Points;

PS> Invoke-CMLootInventory -SCCMHost sccm01.domain.local -Outfile sccmfiles.txt

PS> Invoke- -InventoryFile .\sccmfiles.txt -Extension msi

— python version of CMLoot.

Web

You can find files for analysis on the internet as well. For example, you can use Google
Dorks:

msi

6/21

7/21

Or use special resources with a list of MSI files:

Searching for vulnerabilities

Abandoned credentials

It’s the simplest option. Inside MSI files, it is possible to find leftover passwords, API keys,
endpoints and other data that may be of interest to us as attackers.

We have dedicated a CredFinder class in MyMSIAnalyzer for credential discovery. Searching
for credentials works to the point of simplicity. It checks all properties of the MSI file and tries
to find sensitive information by keywords.

https://github.com/CICADA8-Research/MyMSIAnalyzer/blob/main/MyMSIAnalyzer/CredFinder.cs

8/21

9/21

CredFinder.cs

Since MSI format is close to SQL format, you can get all properties with one query. However,
if you need a portable option or don’t know how to compile CSharp projects yet, you can use
a Powershell script with same logic:

$installerPath = "C:\Windows\Installer"
 $package = New-Object -ComObject WindowsInstaller.Installer

 {
 param (

 [string]$msiPath
)

 try {
 $database = $package.GetType().InvokeMember("OpenDatabase", "InvokeMethod", $null,

$package, @($msiPath, 0))
 $view = $database.GetType().InvokeMember("OpenView", "InvokeMethod", $null,

$database, @("SELECT * FROM Property"))

$view.Execute()
 while ($record = $view.Fetch()) {

 $property = $record.StringData(1)
 $value = $record.StringData(2)

 if ($property -match"USERNAME|PASSWORD|USER|PASS") {
 Write-Host "File: , Property: , Value: "

 }
 }

 } catch {
 Write-Host "Error processing file: " -ForegroundColor Red

 }
 }

 Get-ChildItem -Path -Filter *.msi -
Recurse | ForEach-Object { AnalyzeMsiFile .FullName}

Behavioral analysis

MSI Repair Mode

Of course, inside MSI credentials can be found quite rarely. Most often only when analyzing
MSI files that were stolen from SCCM. So if we are looking for a privilege escalation vector,
we need to analyze the behavior of the MSI file.

10/21

And here we need to familiarize ourselves with an unusual functionality: the MSI file repair
mechanism.

MSI’s repair mechanism allows a Windows system to reinstall either the entire product or
individual components of the product. In effect, fix the program if something went wrong
during use or installation.

This functionality is most conveniently utilized using the CLI tool msiexec.

https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/msiexec#repair-options

11/21

In addition, MSI Custom Actions, which were created by the developer of the MSI file, are
invoked in recovery mode. Here too, there may be a vulnerability. If Custom Actions or the
entire MSI file is misconfigured, the recovery process is performed on behalf of the NT
AUTHORITY\SYSTEM user, which allows us to escalate privileges.

12/21

For example, if the developer has set Custom Actions to run cmd.exe, then during a normal
installation cmd.exe will be run as the current user, but during recovery it will be run as the
system user.

Also through Custom Actions can run some graphical applications on behalf of the system,
from which you can make an analog of Kiosk Bypass, get out to explorer.exe and run
cmd.exe from it. cmd.exe will be launched on behalf of the system.

GUI in custom actions abuse

13/21

Abuse example in Internet Explorer installer

How to detect it?

Let’s start by checking the entire MSI file. There are only two things we need to monitor:
 - Presence of a GUI interface, if we want to promote via explorer.exe escape

 - The name of the user on whose behalf the MSI file is run in recovery mode, if we want to
examine the file for other vulnerabilities, such as DLL Hijacking

The easiest way to detect such MSI files is to use the GuiFinder tool:

.\GuiFinder C:\Temp

If you find yourself running from the NT AUTHORITY\System and the presence of a
graphical interface, you can attempt to perform an escape from the environment as
described above.

What about custom actions?

Custom Actions can also be executed on behalf of the NT AUTHORITY\SYSTEM. To do so,
they must be configured with the Impersonate=“no” option. For example, as here

https://github.com/CICADA8-Research/MyMSIAnalyzer/tree/main/GuiFinder

14/21

<?xml version= encoding=?>
< =>

 < = = = = = =>
 < = = = = = = = = />

< = = = = />
 < = = = = = = />

 < = =>
 < =>

 < = = =>
 < = = =>
 < = />

 </>
 </>
 </>
 </>
 < = = />

 < = = =>
 < = />

 </>
 < = = />

1 1

This will cause Custom Actions to be run on behalf of the NT AUTHORITY\SYSTEM. We
created a ActionAnalyzer class to analyze Custom Actions.

First, we also highlighted keywords whose presence within Custom Actions will result in
privilege escalation. After all, it will be easy to abuse this functionality.

https://github.com/CICADA8-Research/MyMSIAnalyzer/blob/main/MyMSIAnalyzer/ActionAnalyzer.cs

15/21

16/21

Interesting Keywords

The tool then checks that Custom Actions will in principle be called. To do this, they must be
in the call sequence between InstallExecuteSequence and InstallFinalize.

Getting sequence indexes

The validation of these indices is done a little later. After getting the indexes, we extract all
Custom Actions and check for the most important parameter Impersonate: NO

17/21

CustomAction flags analyzing

After making sure that the Custom Action is executed on behalf of the system and is within
the correct action sequence, a keyword check is performed

18/21

Keyword checking

Lets run the tool.

19/21

Example output

The tool will then bring up some interesting CustomActions. And you can start finding ways
to abuse them. For example, perform DLL Sideloading, launch a file from User Writable
Paths, find another vulnerability. I encourage you to study this article and this. It covers the
most common ways to abuse CustomActions.

You can learn how to use our tool and hone your skills on the following vulnerabilities:

CVE-2023–26077 (MSI Installer DLL Hijacking)
CVE-2023–21800 (Symlink Abuse)
CVE-2023–26078 (Escape to cmd.exe)

Custom Actions Overwriting

There is an even more interesting vector. We can find a CustomAction that runs on behalf of
the system. However, we may not be able to abuse it. In that case, we can try to overwrite it!
If the permissions on the MSI file allow, of course. In some cases, administrators override the
default DACL, which will result in elevated privileges.

To find this vector, we created a Writer class.

https://blog.doyensec.com/2024/07/18/custom-actions.html
https://badoption.eu/blog/2023/10/03/MSIFortune.html
https://github.com/CICADA8-Research/MyMSIAnalyzer/blob/main/MyMSIAnalyzer/Writer.cs

20/21

Output example

Diff

MSI files both contain vulnerabilities and fixes them! So we needed a convenient way to
implement diff of two files to analyze patches.

The simplest way is to use msidiff, its syntax is self-explanatory

https://manpages.debian.org/testing/msitools/msidiff.1.en.html

21/21

Diff example

Conclusion

MSI files are used quite often in the Windows infrastructure. Often an improper approach to
developing or deploying such files will lead to the possibility of privilege escalation on the
host.

