
1/9

Anti-Debug: Assembly instructions
anti-debug.checkpoint.com/techniques/assembly.html

Contents

Assembly instructions

Assembly instructions

The following techniques are intended to detect a debugger presence based on how

debuggers behave when the CPU executes a certain instruction.

1. INT 3

Instruction INT3 is an interruption which is used as a software breakpoint. Without a

debugger present, after getting to the INT3 instruction, the exception

EXCEPTION_BREAKPOINT (0x80000003) is generated and an exception handler will be

called. If the debugger is present, the control won’t be given to the exception handler.

C/C++ Code

bool IsDebugged()
{
 __try
 {
 __asm int 3;
 return true;
 }
 __except(EXCEPTION_EXECUTE_HANDLER)
 {
 return false;
 }
}

Besides the short form of INT3 instruction (0xCC opcode), there is also a long form of this

instruction: CD 03 opcode.

When the exception EXCEPTION_BREAKPOINT occurs, the Windows decrements EIP

register to the assumed location of the 0xCC opcode and pass the control to the exception

handler. In the case of the long form of the INT3 instruction, EIP will point to the middle of

the instruction (i.e. to 0x03 byte). Therefore, EIP should be edited in the exception handler

https://anti-debug.checkpoint.com/techniques/assembly.html

2/9

if we want to continue execution after the INT3 instruction (otherwise we’ll most likely get an

EXCEPTION_ACCESS_VIOLATION exception). If not, we can neglect the instruction pointer

modification.

C/C++ Code

bool g_bDebugged = false;

int filter(unsigned int code, struct _EXCEPTION_POINTERS *ep)
{
 g_bDebugged = code != EXCEPTION_BREAKPOINT;
 return EXCEPTION_EXECUTE_HANDLER;
}

bool IsDebugged()
{
 __try
 {
 __asm __emit(0xCD);
 __asm __emit(0x03);
 }
 __except (filter(GetExceptionCode(), GetExceptionInformation()))
 {
 return g_bDebugged;
 }
}

2. INT 2D

Just like in the case of INT3 instruction when the instruction INT2D is executed, the

exception EXCEPTION_BREAKPOINT is raised as well. But with INT2D, Windows uses the

EIP register as an exception address and then increments the EIP register value. Windows

also examines the value of the EAX register while INT2D is executed. If it’s 1, 3 or 4 on all

versions of Windows, or 5 on Vista+, the exception address will be increased by one.

This instruction can cause problems for some debuggers because after the EIP incrimination,

the byte which follows the INT2D instruction will be skipped and the execution might

continue from the damaged instruction.

In the example, we put one-byte NOP instruction after INT2D to skip it in any case. If the

program is executed without a debugger, the control will be passed to the exception handler.

C/C++ Code

3/9

bool IsDebugged()
{
 __try
 {
 __asm xor eax, eax;
 __asm int 0x2d;
 __asm nop;
 return true;
 }
 __except(EXCEPTION_EXECUTE_HANDLER)
 {
 return false;
 }
}

3. ICE

“ICE” is one of Intel’s undocumented instructions. Its opcode is 0xF1. It can be used to

detect if the program is traced.

If ICE instruction is executed, the EXCEPTION_SINGLE_STEP (0x80000004) exception will

be raised.

However, if the program has been already traced, the debugger will consider this exception as

the normal exception generated by executing the instruction with the SingleStep bit set in the

Flags registers. Therefore, under a debugger, the exception handler won’t be called and

execution will continue after the ICE instruction.

C/C++ Code

bool IsDebugged()
{
 __try
 {
 __asm __emit 0xF1;
 return true;
 }
 __except(EXCEPTION_EXECUTE_HANDLER)
 {
 return false;
 }
}

4. Stack Segment Register

https://en.wikipedia.org/wiki/Trap_flag#Single-step_interrupt

4/9

This is a trick that can be used to detect if the program is being traced. The trick consists of

tracing over the following sequence of assembly instructions:

push ss
pop ss
pushf

After single-stepping in a debugger through this code, the Trap Flag will be set. Usually it’s

not visible as debuggers clear the Trap Flag after each debugger event is delivered. However,

if we previously save EFLAGS to the stack, we’ll be able to check whether the Trap Flag is set.

C/C++ Code

bool IsDebugged()
{
 bool bTraced = false;

 __asm
 {
 push ss
 pop ss
 pushf
 test byte ptr [esp+1], 1
 jz movss_not_being_debugged
 }

 bTraced = true;

movss_not_being_debugged:
 // restore stack
 __asm popf;

 return bTraced;
}

5. Instruction Counting

This technique abuses how some debuggers handle EXCEPTION_SINGLE_STEP exceptions.

The idea of this trick is to set hardware breakpoints to each instruction in some predefined

sequence (e.g. sequence of NOPs). Execution of the instruction with a hardware breakpoint on

it raises the EXCEPTION_SINGLE_STEP exception which can be caught by a vectored

exception handler. In the exception handler, we increment a register which plays the role of

instruction counter (EAX in our case) and the instruction pointer EIP to pass the control to

the next instruction in the sequence. Therefore, each time the control is passed to the next

https://en.wikipedia.org/wiki/Trap_flag

5/9

instruction in our sequence, the exception is raised and the counter is incremented. After the

sequence is finished, we check the counter and if it is not equal to the length of our sequence,

we consider it as if the program is being debugged.

C/C++ Code

6/9

#include "hwbrk.h"

static LONG WINAPI InstructionCountingExeptionHandler(PEXCEPTION_POINTERS
pExceptionInfo)
{
 if (pExceptionInfo->ExceptionRecord->ExceptionCode == EXCEPTION_SINGLE_STEP)
 {
 pExceptionInfo->ContextRecord->Eax += 1;
 pExceptionInfo->ContextRecord->Eip += 1;
 return EXCEPTION_CONTINUE_EXECUTION;
 }
 return EXCEPTION_CONTINUE_SEARCH;
}

__declspec(naked) DWORD WINAPI InstructionCountingFunc(LPVOID lpThreadParameter)
{
 __asm
 {
 xor eax, eax
 nop
 nop
 nop
 nop
 cmp al, 4
 jne being_debugged
 }

 ExitThread(FALSE);

being_debugged:
 ExitThread(TRUE);
}

bool IsDebugged()
{
 PVOID hVeh = nullptr;
 HANDLE hThread = nullptr;
 bool bDebugged = false;

 __try
 {
 hVeh = AddVectoredExceptionHandler(TRUE, InstructionCountingExeptionHandler);
 if (!hVeh)
 __leave;

 hThread = CreateThread(0, 0, InstructionCountingFunc, NULL, CREATE_SUSPENDED,
0);
 if (!hThread)
 __leave;

 PVOID pThreadAddr = &InstructionCountingFunc;
 // Fix thread entry address if it is a JMP stub (E9 XX XX XX XX)

7/9

 if (*(PBYTE)pThreadAddr == 0xE9)
 pThreadAddr = (PVOID)((DWORD)pThreadAddr + 5 + *(PDWORD)
((PBYTE)pThreadAddr + 1));

 for (auto i = 0; i < m_nInstructionCount; i++)
 m_hHwBps[i] = SetHardwareBreakpoint(
 hThread, HWBRK_TYPE_CODE, HWBRK_SIZE_1, (PVOID)((DWORD)pThreadAddr +
2 + i));

 ResumeThread(hThread);
 WaitForSingleObject(hThread, INFINITE);

 DWORD dwThreadExitCode;
 if (TRUE == GetExitCodeThread(hThread, &dwThreadExitCode))
 bDebugged = (TRUE == dwThreadExitCode);
 }
 __finally
 {
 if (hThread)
 CloseHandle(hThread);

 for (int i = 0; i < 4; i++)
 {
 if (m_hHwBps[i])
 RemoveHardwareBreakpoint(m_hHwBps[i]);
 }

 if (hVeh)
 RemoveVectoredExceptionHandler(hVeh);
 }

 return bDebugged;
}

6. POPF and Trap Flag

This is another trick that can indicate whether a program is being traced.

There is a Trap Flag in the Flags register. When the Trap Flag is set, the exception

SINGLE_STEP is raised. However, if we traced the code, the Trap Flag will be cleared by a

debugger so we won’t see the exception.

C/C++ Code

8/9

bool IsDebugged()
{
 __try
 {
 __asm
 {
 pushfd
 mov dword ptr [esp], 0x100
 popfd
 nop
 }
 return true;
 }
 __except(GetExceptionCode() == EXCEPTION_SINGLE_STEP
 ? EXCEPTION_EXECUTE_HANDLER
 : EXCEPTION_CONTINUE_EXECUTION)
 {
 return false;
 }
}

7. Instruction Prefixes

This trick works only in some debuggers. It abuses the way how these debuggers handle

instruction prefixes.

If we execute the following code in OllyDbg, after stepping to the first byte F3, we’ll

immediately get to the end of try block. The debugger just skips the prefix and gives the

control to the INT1 instruction.

If we run the same code without a debugger, an exception will be raised and we’ll get to

except block.

C/C++ Code

9/9

bool IsDebugged()
{
 __try
 {
 // 0xF3 0x64 disassembles as PREFIX REP:
 __asm __emit 0xF3
 __asm __emit 0x64
 // One byte INT 1
 __asm __emit 0xF1
 return true;
 }
 __except(EXCEPTION_EXECUTE_HANDLER)
 {
 return false;
 }
}

Mitigations

During debugging:

The best way to mitigate all the following checks is to patch them with NOP

instructions.

Regarding anti-tracing techniques: instead of patching the code, we can simply

set a breakpoint in the code which follows the check and run the program till this

breakpoint.

For anti-anti-debug tool development: No mitigation.

