
1/10

Anti-Debug: Misc
anti-debug.checkpoint.com/techniques/misc.html

Contents

Misc

Misc

1. FindWindow()

This technique includes the simple enumeration of window classes in the system and

comparing them with known windows classes of debuggers.

The following functions can be used:

user32!FindWindowW()

user32!FindWindowA()

user32!FindWindowExW()

user32!FindWindowExA()

C/C++ Code

const std::vector<std::string> vWindowClasses = {
 "OLLYDBG",
 "WinDbgFrameClass", // WinDbg
 "ID", // Immunity Debugger
 "Zeta Debugger",
 "Rock Debugger",
 "ObsidianGUI",
};

bool IsDebugged()
{
 for (auto &sWndClass : vWindowClasses)
 {
 if (NULL != FindWindowA(sWndClass.c_str(), NULL))
 return true;
 }
 return false;
}

https://anti-debug.checkpoint.com/techniques/misc.html

2/10

2. Parent Process Check

Normally, a user-mode process is executed by double-clicking on a file icon. If the process is

executed this way, its parent process will be the shell process (“explorer.exe”).

The main idea of the two following methods is to compare the PID of the parent process with

the PID of “explorer.exe”.

2.1. NtQueryInformationProcess()

This method includes obtaining the shell process window handle using

user32!GetShellWindow() and obtaining its process ID by calling

user32!GetWindowThreadProcessId().

Then, the parent process ID can be obtained from the PROCESS_BASIC_INFORMATION

structure by calling ntdll!NtQueryInformationProcess() with the

ProcessBasicInformation class.

C/C++ Code

bool IsDebugged()
{
 HWND hExplorerWnd = GetShellWindow();
 if (!hExplorerWnd)
 return false;

 DWORD dwExplorerProcessId;
 GetWindowThreadProcessId(hExplorerWnd, &dwExplorerProcessId);

 ntdll::PROCESS_BASIC_INFORMATION ProcessInfo;
 NTSTATUS status = ntdll::NtQueryInformationProcess(
 GetCurrentProcess(),
 ntdll::PROCESS_INFORMATION_CLASS::ProcessBasicInformation,
 &ProcessInfo,
 sizeof(ProcessInfo),
 NULL);
 if (!NT_SUCCESS(status))
 return false;

 return (DWORD)ProcessInfo.InheritedFromUniqueProcessId != dwExplorerProcessId;
}

2.2. CreateToolhelp32Snapshot()

3/10

The parent process ID and the parent process name can be obtained using the

kernel32!CreateToolhelp32Snapshot() and kernel32!Process32Next()

functions.

C/C++ Code

4/10

DWORD GetParentProcessId(DWORD dwCurrentProcessId)
{
 DWORD dwParentProcessId = -1;
 PROCESSENTRY32W ProcessEntry = { 0 };
 ProcessEntry.dwSize = sizeof(PROCESSENTRY32W);

 HANDLE hSnapshot = CreateToolhelp32Snapshot(TH32CS_SNAPPROCESS, 0);
 if(Process32FirstW(hSnapshot, &ProcessEntry))
 {
 do
 {
 if (ProcessEntry.th32ProcessID == dwCurrentProcessId)
 {
 dwParentProcessId = ProcessEntry.th32ParentProcessID;
 break;
 }
 } while(Process32NextW(hSnapshot, &ProcessEntry));
 }

 CloseHandle(hSnapshot);
 return dwParentProcessId;
}

bool IsDebugged()
{
 bool bDebugged = false;
 DWORD dwParentProcessId = GetParentProcessId(GetCurrentProcessId());

 PROCESSENTRY32 ProcessEntry = { 0 };
 ProcessEntry.dwSize = sizeof(PROCESSENTRY32W);

 HANDLE hSnapshot = CreateToolhelp32Snapshot(TH32CS_SNAPPROCESS, 0);
 if(Process32First(hSnapshot, &ProcessEntry))
 {
 do
 {
 if ((ProcessEntry.th32ProcessID == dwParentProcessId) &&
 (strcmp(ProcessEntry.szExeFile, "explorer.exe")))
 {
 bDebugged = true;
 break;
 }
 } while(Process32Next(hSnapshot, &ProcessEntry));
 }

 CloseHandle(hSnapshot);
 return bDebugged;
}

3. Selectors

5/10

Selector values might appear to be stable, but they are actually volatile in certain

circumstances, and also depending on the version of Windows. For example, a selector value

can be set within a thread, but it might not hold that value for very long. Certain events might

cause the selector value to be changed back to its default value. One such event is an

exception. In the context of a debugger, the single-step exception is still an exception, which

can cause some unexpected behavior.

x86 Assembly

 xor eax, eax
 push fs
 pop ds
l1: xchg [eax], cl
 xchg [eax], cl

On the 64-bit versions of Windows, single-stepping through this code will cause an access

violation exception at l1 because the DS selector will be restored to its default value even

before l1 is reached. On the 32-bit versions of Windows, the DS selector will not have its

value restored, unless a non-debugging exception occurs. The version-specific difference in

behaviors expands even further if the SS selector is used. On the 64-bit versions of Windows,

the SS selector will be restored to its default value, as in the DS selector case. However, on the

32-bit versions of Windows, the SS selector value will not be restored, even if an exception

occurs.

x86-64 Assembly

 xor eax, eax
 push offset l2
 push d fs:[eax]
 mov fs:[eax], esp
 push fs
 pop ss
 xchg [eax], cl
 xchg [eax], cl
l1: int 3 ;force exception to occur
l2: ;looks like it would be reached
 ;if an exception occurs
 ...

then when the “int 3” instruction is reached at l1 and the breakpoint exception occurs, the

exception handler at l2 is not called as expected. Instead, the process is simply terminated.

A variation of this technique detects the single-step event by simply checking if the

assignment was successful.

6/10

push 3
pop gs
mov ax, gs
cmp al, 3
jne being_debugged

The FS and GS selectors are special cases. For certain values, they will be affected by the

single-step event, even on the 32-bit versions of Windows. However, in the case of the FS

selector (and, technically, the GS selector), it will be not restored to its default value on the

32-bit versions of Windows, if it was set to a value from zero to three. Instead, it will be set to

zero (the GS selector is affected in the same way, but the default value for the GS selector is

zero). On the 64-bit versions of Windows, it (they) will be restored to its (their) default value.

This code is also vulnerable to a race condition caused by a thread-switch event. When a

thread-switch event occurs, it behaves like an exception, and will cause the selector values to

be altered, which, in the case of the FS selector, means that it will be set to zero.

A variation of this technique solves that problem by waiting intentionally for a thread-switch

event to occur.

 push 3
 pop gs
l1: mov ax, gs
 cmp al, 3
 je l1

However, this code is vulnerable to the problem that it was trying to detect in the first place,

because it does not check if the original assignment was successful. Of course, the two code

snippets can be combined to produce the desired effect, by waiting until the thread-switch

event occurs, and then performing the assignment within the window of time that should

exist until the next one occurs. [Ferrie]

C/C++ Code

http://pferrie.host22.com/papers/antidebug.pdf

7/10

bool IsTraced()
{
 __asm
 {
 push 3
 pop gs

 __asm SeclectorsLbl:
 mov ax, gs
 cmp al, 3
 je SeclectorsLbl

 push 3
 pop gs
 mov ax, gs
 cmp al, 3
 jne Selectors_Debugged
 }

 return false;

Selectors_Debugged:
 return true;
}

4. DbgPrint()

The debug functions such as ntdll!DbgPrint() and

kernel32!OutputDebugStringW() cause the exception DBG_PRINTEXCEPTION_C

(0x40010006). If a program is executed with an attached debugger, then the debugger will

handle this exception. But if no debugger is present, and an exception handler is registered,

this exception will be caught by the exception handler.

C/C++ Code

bool IsDebugged()
{
 __try
 {
 RaiseException(DBG_PRINTEXCEPTION_C, 0, 0, 0);
 }
 __except(GetExceptionCode() == DBG_PRINTEXCEPTION_C)
 {
 return false;
 }

 return true;
}

8/10

5. DbgSetDebugFilterState()

The functions ntdll!DbgSetDebugFilterState() and

ntdll!NtSetDebugFilterState() only set a flag which will be checked be a kernel-

mode debugger if it is present. Therefore, if a kernel debugger is attached to the system, these

functions will succeed. However, the functions can also succeed because of side-effects

caused by some user-mode debuggers. These functions require administrator privileges.

C/C++ Code

bool IsDebugged()
{
 return NT_SUCCESS(ntdll::NtSetDebugFilterState(0, 0, TRUE));
}

6. NtYieldExecution() / SwitchToThread()

This method is not really reliable because it only shows if there a high priority thread in the

current process. However, it could be used as an anti-tracing technique.

When an application is traced in a debugger and a single-step is executed, the context can’t

be switched to other thread. This means that ntdll!NtYieldExecution() returns

STATUS_NO_YIELD_PERFORMED (0x40000024), which leads to

kernel32!SwitchToThread() returning zero.

The strategy of using this technique is that there is a loop which modifies some counter if

kernel32!SwitchToThread() returns zero, or ntdll!NtYieldExecution() returns

STATUS_NO_YIELD_PERFORMED. This can be a loop which decrypts strings or some other

loop which is supposed to be analyzed manually in a debugger. If the counter has the

expected value (expected i.e. the value if all kernel32!SwitchToThread() returned zero)

after leaving the loop, we consider that the debugger is present.

In the example below, we define a one-byte counter (initialized with 0) which shifts one bit to

the left if kernel32!SwitchToThread returns zero. If it shifts 8 times, then the value of

the counter will become 0 and the debugger is considered to be present.

C/C++ Code

9/10

bool IsDebugged()
{
 BYTE ucCounter = 1;
 for (int i = 0; i < 8; i++)
 {
 Sleep(0x0F);
 ucCounter <<= (1 - SwitchToThread());
 }

 return ucCounter == 0;
}

Mitigations

During debugging: Fill anti-debug pr anti-traced checks with NOPs.

For anti-anti-debug tool development:

1. For FindWindow(): Hook user32!NtUserFindWindowEx(). In the hook, call the

original user32!NtUserFindWindowEx() function. If it is called from the debugged

process and the parent process looks suspicious, then return unsuccessfully from the

hook.

2. For Parent Process Checks: Hook ntdll!NtQuerySystemInformation(). If

SystemInformationClass is one of the following values:

SystemProcessInformation

SystemSessionProcessInformation

SystemExtendedProcessInformation

and the process name looks suspicious, then the hook must modify the process name.

3. For Selectors: No mitigations.

4. For DbgPrint: you have to implement a plugin for a specific debugger and change the

behavior of event handler which is triggered after the DBG_PRINTEXCEPTION_C

exception has arrived.

5. For DbgSetDebugFilterState(): Hook ntdll!NtSetDebugFilterState(). If

the process is running with debug privileges, return unsuccessfully from the hook.

6. For SwitchToThread: Hook ntdll!NtYieldExecution() and return an

unsuccessful status from the hook.

10/10

