
1/8

February 3, 2020

Bypass EDR’s memory protection, introduction to
hooking

medium.com/@fsx30/bypass-edrs-memory-protection-introduction-to-hooking-2efb21acffd6

Hoang Bui

Introduction

On a recent internal penetration engagement, I was faced against an EDR product that I will

not name. This product greatly hindered my ability to access lsass’ memory and use our own

custom flavor of Mimikatz to dump clear-text credentials.

For those who recommends ProcDump

The Wrong Path

So now, as an ex-malware author — I know that there are a few things you could do as a

driver to accomplish this detection and block. The first thing that comes to my mind was

Obregistercallback which is commonly used by many Antivirus products. Microsoft

implemented this callback due to many antivirus products performing very sketchy winapi

hooks that reassemble malware rootkits. However, at the bottom of the msdn page, you will

notice a text saying “Available starting with Windows Vista with Service Pack 1 (SP1) and

Windows Server 2008.” To give some missing context, I am on a Windows server 2003 at

the moment. Therefore, it is missing the necessary function to perform this block.

After spending hours and hours, doing black magic stuff with csrss.exe and attempting to

inherit a handle to lsass.exe through csrss.exe, I was successful in gaining a handle with

PROCESS_ALL_ACCESS to lsass.exe. This was through abusing csrss to spawn a child

process and then inherit the already existing handle to lsass.

https://medium.com/@fsx30/bypass-edrs-memory-protection-introduction-to-hooking-2efb21acffd6
https://medium.com/@fsx30?source=post_page-----2efb21acffd6--------------------------------
https://medium.com/@fsx30?source=post_page-----2efb21acffd6--------------------------------
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/content/wdm/nf-wdm-obregistercallbacks


2/8

There is no EDR solution on this machine, this was just an PoC

However, after thinking “I got this!” and was ready to rejoice in victory over defeating a

certain EDR, I was met with a disappointing conclusion. The EDR blocked the shellcode

injection into csrss as well as the thread creation through RtlCreateUserThread. However,

for some reason — the code while failing to spawn as a child process and inherit the handle,

was still somehow able to get the PROCESS_ALL_ACCESS handle to lsass.exe.

WHAT?!

Hold up, let me try just opening a handle to lsass.exe without any fancy stuff with just this

line:

HANDLE hProc = OpenProcess(PROCESS_ALL_ACCESS, FALSE, lsasspid);

And what do you know, I got a handle with FULL CONTROL over lsass.exe. The EDR did not

make a single fuzz about this. This is when I realized, I started off the approach the wrong

way and the EDR never really cared about you gaining the handle access. It is what you do

afterward with that handle that will come under scrutiny.

Back on Track

Knowing there was no fancy trick in getting a full control handle to lsass.exe, we can now

move forward to find the next point of the issue. Immediately calling

MiniDumpWriteDump() with the handle failed spectacularly.



3/8

Let’s dissect this warning further. “Violation: LsassRead”. I didn’t read anything, what are

you talking about? I just want to do a dump of the process. However, I also know that to

make a dump of a remote process, there must be some sort of WINAPI being called such as

ReadProcessMemory (RPM) inside MiniDumpWriteDump(). Let’s look at

MiniDumpWriteDump’s source code at ReactOS.

https://doxygen.reactos.org/d8/d5d/minidump_8c.html#a9a74c45722230d9f89a34fd843050937


4/8

Multiple calls to RPM

As you can see by, the function (2) dump_exception_info(), as well as many other functions,

relies on (3) RPM to perform its duty. These functions are referenced by

MiniDumpWriteDump (1) and this is probably the root of our issue. Now here is where a bit

of experience comes into play. You must understand the Windows System Internal and how

WINAPIs are processed. Using ReadProcessMemory as an example — it works like this.

ReadProcessMemory is just a wrapper. It does a bunch of sanity check such as nullptr check.

That is all RPM does. However, RPM also calls a function “NtReadVirtualMemory”, which

sets up the registers before doing a syscall instruction. Syscall instruction is just telling the

CPU to enter kernel mode which then another function ALSO named NtReadVirtualMemory

is called, which does the actual logic of what ReadProcessMemory is supposed to do.

— — — — — -Userland — — — —-— — | — — — Kernel Land — — —



5/8

RPM — > NtReadVirtualMemory --> SYSCALL->NtReadVirtualMemory

Kernel32 — — -ntdll — — — — — — — — — - — — — — — ntoskrnl

With that knowledge, we now must identify HOW the EDR product is detecting and stopping

the RPM/NtReadVirtualMemory call. This comes as a simple answer which is “hooking”.

Please refer to my previous post regarding hooking here for more information. In short, it

gives you the ability to put your code in the middle of any function and gain access to the

arguments as well as the return variable. I am 100% sure that the EDR is using some sort of

hook through one or more of the various techniques that I mentioned.

However, readers should know that most if not all EDR products are using a service,

specifically a driver running inside kernel mode. With access to the kernel mode, the driver

could perform the hook at ANY of the level in the RPM’s callstack. However, this opens up a

huge security hole in a Windows environment if it was trivial for any driver to hook ANY level

of a function. Therefore, a solution is to put forward to prevent modification of such nature

and that solution is known as Kernel Patch Protection (KPP or Patch Guard). KPP scans the

kernel on almost every level and will triggers a BSOD if a modification is detected. This

includes ntoskrnl portion which houses the WINAPI’s kernel level’s logic. With this

knowledge, we are assured that the EDR would not and did not hook any kernel level

function inside that portion of the call stack, leaving us with the user-land’s RPM and

NtReadVirtualMemory calls.

The Hook

To see where the function is located inside our application’s memory, it is as trivial as a printf

with %p format string and the function name as the argument, such as below.

However, unlike RPM, NtReadVirtualMemory is not an exported function inside ntdll and

therefore you cannot just reference to the function like normal. You must specify the

signature of the function as well as linking ntdll.lib into your project to do so.

With everything in place, let’s run it and take a look!

Now, this provides us with the address of both RPM and ntReadVirtualMemory. I will now

use my favorite reversing tool to read the memory and analyze its structure, Cheat Engine.

https://medium.com/@fsx30/vectored-exception-handling-hooking-via-forced-exception-f888754549c6


6/8

ReadProcessMemory

NtReadVirtualMemory

For the RPM function, it looks fine. It does some stack and register set up and then calls

ReadProcessMemory inside Kernelbase (Topic for another time). Which would eventually

leads you down into ntdll’s NtReadVirtualMemory. However, if you look at

NtReadVirtualMemory and know what the most basic detour hook look like, you can tell that

this is not normal. The first 5 bytes of the function is modified and the rest are left as-is. You

can tell this by looking at other similar functions around it. All the other functions follows a

very similar format:

0x4C, 0x8B, 0xD1, // mov r10, rcx; NtReadVirtualMemory

0xB8, 0x3c, 0x00, 0x00, 0x00, // eax, 3ch — aka syscall id

0x0F, 0x05, // syscall

0xC3 // retn

With one difference being the syscall id (which identifies the WINAPI function to be called

once inside kernel land). However, for NtReadVirtualMemory, the first instruction is actually

a JMP instruction to an address somewhere else in memory. Let’s follow that.



7/8

CyMemDef64.dll

Okay, so we are no longer inside ntdll’s module but instead inside CyMemdef64.dll’s module.

Ahhhhh now I get it.

The EDR placed a jump instruction where the original NtReadVirtualMemory function is

supposed to be, redirect the code flow into their own module which then checked for any sort

of malicious activity. If the checks fail, the Nt* function would then return with an error code,

never entering the kernel land and execute to begin with.

The Bypass

It is now very self-evident what the EDR is doing to detect and stop our WINAPI calls. But

how do we get around that? There are two solutions.

Re-Patch the Patch

We know what the NtReadVirtualMemory function SHOULD looks like and we can easily

overwrite the jmp instruction with the correct instructions. This will stop our calls from being

intercepted by CyMemDef64.dll and enter the kernel where they have no control over.

Ntdll IAT Hook

We could also create our own function, similar to what we are doing in Re-Patch the Patch,

but instead of overwriting the hooked function, we will recreate it elsewhere. Then, we will

walk Ntdll’s Import Address Table, swap out the pointer for NtReadVirtualMemory and

points it to our new fixed_NtReadVirtualMemory. The advantage of this method is that if the

EDR decides to check on their hook, it will looks unmodified. It just is never called and the

ntdll IAT is pointed elsewhere.

The Result

I went with the first approach. It is simple, and it allows me to get out the blog quicker :).

However, it would be trivial to do the second method and I have plans on doing just that

within a few days. Introducing AndrewSpecial, for my manager Andrew who is currently

battling a busted appendix in the hospital right now. Get well soon man.

https://guidedhacking.com/


8/8

AndrewSpecial.exe was never caught :P

Conclusion

This currently works for this particular EDR, however — It would be trivial to reverse similar

EDR products and create a universal bypass due to their limitation around what they can

hook and what they can’t (Thank you KPP).

Did I also mention that this works on both 64 bit (on all versions of windows) and 32 bits

(untested)? And the source code is available HERE.

Thank you again for your time and please let me know if I made any mistake.

 

 

https://github.com/hoangprod/AndrewSpecial/tree/master

