
1/3

27 Sep 2022

Constrained Language Mode Bypass When
__PSLockDownPolicy Is Used

blackhillsinfosec.com/constrained-language-mode-bypass-when-pslockdownpolicy-is-used

Carrie Roberts //

PowerShell’s Constrained Language (CLM) mode limits the functionality available to users to

reduce the attack surface. It is meant to be used in conjunction with application control

solutions like Device Guard User Mode Code Integrity. If CLM is enabled without proper

application control settings, it is not an effective security solution.

One method for enabling CLM the wrong way is using the __PSLockDownPolicy

environment variable. This is what Microsoft has to say about that:

As part of the implementation of Constrained Language, PowerShell included an environment
variable for debugging and unit testing called __PSLockdownPolicy. While we have never
documented this, some have discovered it and described this as an enforcement mechanism.
This is unwise because an attacker can easily change the environment variable to remove this
enforcement. In addition, there are also file naming conventions that enable FullLanguage mode
on a script, effectively bypassing Constrained Language.

reference

https://www.blackhillsinfosec.com/constrained-language-mode-bypass-when-pslockdownpolicy-is-used/
https://twitter.com/OrOneEqualsOne
https://devblogs.microsoft.com/powershell/powershell-constrained-language-mode/


2/3

A malicious user with admin privileges could simply remove the environment variable, but

what about a user without admins privs? At the end of the quote above, there is a very

intriguing statement.

In addition, there are also file naming conventions that enable FullLanguage mode on a script,
effectively bypassing Constrained Language.

There are file naming conventions to enable Full Language mode? Do tell — inquiring minds

want to know!

I’m preparing a 16-hour course on “PowerShell For InfoSec” where I will be covering this

topic, and I didn’t feel comfortable making such a statement without actually knowing how to

do it. So I put Google Search through the paces trying to find the magic file naming

convention with no luck. Ultimately, I bit the bullet and actually looked at the PowerShell

source code and now I share the magic with you. reference

And there we have it. We just need to have “System32” somewhere in the path of the

PowerShell script that we want to run in Full Language mode and it will do it. Let’s test it out.

First, from an administrative PowerShell prompt, enable CLM using the environment

variable (aka “the wrong way).

[Environment]::SetEnvironmentVariable(‘__PSLockdownPolicy‘, ‘4’, ‘Machine‘)

https://github.com/PowerShell/PowerShell/blob/3d4e294262d2f2d7472ebd5d849b1b68fd6ef524/src/System.Management.Automation/security/wldpNativeMethods.cs


3/3

Now, we will use this super simple script just to print out the current language mode.

Let’s run the script first from a path that does not contain “System32” and then again from a

path that does.

And there you have it; we can easily run any script in full language mode in this case, even

without administrative access.

Keep this trick in mind the next time you run into CLM on a pentest to help ensure the

organization has implemented it correctly.

 

 


