
1/9

May 3, 2023

Exploring Impersonation through the Named Pipe
Filesystem Driver

posts.specterops.io/exploring-impersonation-through-the-named-pipe-filesystem-driver-15f324dfbaf2

Introduction

Impersonation happens often natively in Windows, however, adversaries also use it to run code

in the context of another user. Recently I was researching named pipe impersonation which

naturally led me digging into the Win32 API ImpersonateNamedPipeClient. I had never really

dug into how ImpersonateNamedPipeClient worked under the hood, so I wanted to do so.

During analysis, I saw that a call to NtFsControlFile was made:

NtFsControlFile is a function that allows the caller to send a value

(FSCTL_PIPE_IMPERSONATE (0x11001C) in the above decompilation), known as a file

system control (FSCTL) code, to a file system driver. Upon initial analysis of this function I was

reminded of another function — DeviceIoControl. DeviceIoControl serves a similar purpose in

the sense that it allows someone to send an input/output control code (known as an IOCTL) to a

driver. IOCTLs and FSCTL codes are the same thing, but FSCTLs are a type of IOCTL that are

specific to file system drivers. I have encountered this function before so it provided some

familiarity with the general architecture of drivers, control codes, and other related concepts,

however; I have never interacted with file system drivers themselves.

https://posts.specterops.io/exploring-impersonation-through-the-named-pipe-filesystem-driver-15f324dfbaf2
https://learn.microsoft.com/en-us/windows/win32/api/namedpipeapi/nf-namedpipeapi-impersonatenamedpipeclient
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntifs/nf-ntifs-ntfscontrolfile
https://learn.microsoft.com/en-us/windows-hardware/drivers/ifs/about-fsctls
https://learn.microsoft.com/en-us/windows/win32/api/ioapiset/nf-ioapiset-deviceiocontrol
https://learn.microsoft.com/en-us/windows/win32/devio/device-input-and-output-control-ioctl-

2/9

This post covers file system drivers, specifically the named pipe driver (npfs.sys), as well as

shows a proof of concept for calling NtFsControlFile directly to perform named pipe

impersonation instead of calling the Win32 API, ImpersonateNamedPipeClient.

This won’t be an indepth dive into device drivers, file system drivers, or minifilters. Instead I

want to explain some concepts that I learned that I think will be relevant and important to

understanding file system operations, specific to named pipes.

Internals

Microsoft exposes a set of APIs that allow applications to interact with drivers —

DeviceIoControl, NtDeviceIoControlFile, and NtfsControlFile. Both functions communicate

with different types of drivers but the general communication between the application and the

driver are the same. Eventually both make a call to IofCallDriver. This function allows the caller

to send an input/output request packet (IRP) to the specific driver. IofCallDriver takes in two

parameters:

1. A pointer to the structure which is an object that acts as an interface with which the user-

mode caller can communicate. Device objects are linked to a driver which will execute the

request.

2. A pointer to an structure which packages up the call information about the call to the

driver.

The DEVICE_OBJECT is going to hold where the call is going to whereas the IRP is going to

hold the relevant information about the request for the driver. An IRP is a kernel-based

dynamic structure. This structure holds the I/O stack which is backed by the

IO_STACK_LOCATION structure that holds information about the functions (known as major

and minor functions) being invoked and the appropriate parameters. Major functions are

represented as IRP_MJ_ which informs the driver of the operation it should execute. The name

of the major function is well-documented in the WDM header with their name and their

corresponding number.

Here is a small list of those:

There might be some major functions that look familiar above, but since we are talking about

named pipes, let’s look at IRP_MJ_CREATE_NAMED_PIPE. This IRP is sent when

CreateNamedPipe(A/W) is called. This Win32 API transitions into the kernel via the

NtCreateNamedPipeFile syscall. NtCreateNamedPipeFile doesn’t perform any file system

operations but instead it receives the call from user-mode and forwards it to the appropriate

driver via IofCallDriver call. IofCallDriver sends the request to the driver responsible for the

named pipe creation, npfs.sys.

Call stack:

https://learn.microsoft.com/en-us/windows/win32/api/winternl/nf-winternl-ntdeviceiocontrolfile
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-iofcalldriver
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/ns-wdm-_io_stack_location
https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/irp-major-function-codes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ifs/irp-mj-create-named-pipe
https://learn.microsoft.com/en-us/windows/win32/devnotes/nt-create-named-pipe-file

3/9

IRP:

Note: There is even more that could be exposed in WinDbg like the parameters to the

IRP_MJ_CREATE_NAMED_PIPE call, the security context, etc. This is all stored in the

IO_STACK_LOCATION.

Another good example of this is when CreateFile(A/W) is called, this will transition into the

kernel via NtCreateFile and will eventually make a call to IofCallDriver to communicate with

ntfs.sys (or another file system driver) to create the file object:

https://learn.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-createfilea
https://learn.microsoft.com/en-us/windows/win32/api/winternl/nf-winternl-ntcreatefile

4/9

Chapter 11 in the 2nd Part of the Windows Internals book breaks this down well if you are

interested in learning more.

Device I/O Control Functions

Earlier I mentioned DeviceIoControl and NtfsControlFile. These are special functions because

they relate to unique IRP major functions. Here are the IRP major functions they point to:

DeviceIoControl — (0xe)

NtfsControlFile — (0xd)

NtfsControlFile and DeviceIoControl look very similar in functionality but used differently in

practice. Simply put, DeviceIoControl is for normal device drivers whereas NtfsControlFile is

for file system drivers. DeviceIoControl requires a handle to the device which holds a driver

object. NtfsControlFile passes in a handle to a FILE_OBJECT because the action is being

executed on that object and later will pass through the filter manager (FltMgr) which will

extract the device type and know which file system driver to pass it to.

Since we are primarily talking about file system drivers in this post we will continue using

functions/terminology specific for file system drivers. However; it is good to note the majority

of the concepts are the same.

When a file system driver wants to expose any functionality, it’ll create an internal function

implementing that functionality and register it as a major function handler. As an example,

below we can see a number of registered major functions within the NpFs driver object:

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/ns-wdm-_file_object

5/9

When a user-mode application wants to execute that functionality, they will call the

NtfsControlFile function and pass in the control code which will eventually go to the

appropriate file system driver where it will execute its IRP_MJ_FILE_SYSTEM_CONTROL

function and in turn execute the internal function associated with the FSCTL code.

We will see an example of this below when ImpersonateNamedPipeClient is called and again in

the code I provide where I call NtfsControlFile directly.

ImpersonateNamedPipeClient

6/9

ImpersonateNamedPipeClient is a Win32 API that allows a named pipe server to impersonate

the token of client processes connecting to the server’s named pipe. This is different than other

token impersonation techniques as it requires something or someone else to connect to you

before you can steal the token, whereas other capabilities (ImpersonateLoggedOnUser,

CreateProcessWithToken, CreateProcessWithLogon, etc) allow for the impersonation of a token

by targeting a process, usually ones that are running in a higher integrity level.

Examples in PowerShell can be found in following Atomic Test Harnesses:

NtfsControlFile

As previously mentioned, ImpersonateNamedPipeClient makes a call to NtfsControlFile where

it passes in the FSCTL code 0x11001C. Control codes are defined by the CTL_CODE macro

which can be found in the ntfis.h:

This can be confusing, but let’s manually parse this out. The binary format of 0x11001C is

000100010000000000011100.

DeviceType (shift bits bits): (FILE_DEVICE_NAMED_PIPE)Access (shift bits
bits) FILE_ANY_ACCESS (shift bits bits): (bits): METHOD_BUFFERED

Note: An easier way to do this is via this IOCTL calculator or by using !ioctldecode in WinDbg

(thank you Yarden for showing me this WinDbg way!).

Going back to the NTFS header, this value is documented as the FSCTL_PIPE_IMPERSONATE

control code.

So why does this FSCTL matter? Remember that NtfsControlFile is eventually going to make a

call into IofCallDriver, which passes in the IRP structure as previously mentioned. This IRP

holds the relevant information about the call being sent to a device driver, one of which is the

Major Function being invoked and the parameters that are packaged with that Major Function.

For drivers when they expose a FSCTL code they are exposing this through the

IRP_MJ_FILE_SYSTEM_CONTROL Major Function.

The driver then is going to call the IoGetCurrentIrpStackLocation to get the stack location in the

IRP. This is important because under Parameters. FileSystemControl, you can see the

parameters passed into this major function, one of which is the FSCTL code:

https://github.com/EvanMcBroom/ioctl-parser
https://learn.microsoft.com/en-us/windows-hardware/drivers/debugger/-ioctldecode

7/9

This call leads to the NPFS FileSystemControl function NpCommonFileSystemControl.

Internally, this function checks the FSCTL code and executes an internal function, in this case

NpImpersonate:

NpImpersonate then calls SeImpersonateClientEx which in turn calls PsImpersonateClient to

impersonate the token of the thread that is connecting to the named pipe.

One thing to note is that there are quite a few FSCTLs exposed in npfs.sys that could be used for

things like named pipe peeking, connecting to a named pipe, etc. Luckily it seems all of them

are exposed in the NTFS header within the SDK.

Proof of Concept

When I see an opportunity to call either a lower level call instead of a Win32 API or the ability

to send a control code to a driver, I try to take it. The proof of concept is simple as it changes

ImpersonateLoggedOnUser out for NtfsControlFile in a named pipe server implementation.

Once NtfsControlFile completes successfully, the user will have impersonated the client that

connected to the “npfs” named pipe (i.e., \\pipe\npfs).

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntifs/nf-ntifs-seimpersonateclientex

8/9

The code for this POC can be found on my GitHub at:

https://github.com/jsecurity101/RandomPOCs/tree/main/NtfsControlFile

Function Flow

I have provided the function call stack for those that are interested:

Conclusion

https://github.com/jsecurity101/RandomPOCs/tree/main/NtfsControlFile

9/9

I think oftentimes the thought of interacting directly with a driver to perform an action is

overlooked. As an industry this has been touched on but most recently talk has been around

interfacing with technologies like RPC, COM, etc. It is important to note that through device

objects user mode applications can interact with drivers as well and depending on the

functionality that the driver supports those actions could be useful to the callee. Although this

isn’t a vulnerability or a vulnerable driver, this has been seen with other vulnerable drivers quite

a bit.

This was also a fun project that gave me an opportunity to learn about file system drivers and

how one may interact with them. I wanted to share this process as well as expose that when

dealing with files there are ways one can interact directly with a file system driver to execute

some functionality.

In the future I might do a write-up about the differences between file system drivers and file

system filter drivers as well as an in-depth look into how someone can capture information

about file system activity both from a driver perspective as well as ETW.

Remarks

A very big thank you to Yarden Shafir for answering some very critical questions, providing me

with resources to learn this topic, as well as giving me inspiration to write this post.

https://twitter.com/yarden_shafir

