
1/16

VBA: resolving exports in runtime without
NtQueryInformationProcess or GetProcAddress

adepts.of0x.cc/vba-exports-runtime

Mar 17, 2023 Adepts of 0xCC

Dear Fellowlship, today’s homily is about bending the ungodly language of VBA to reduce
traces when writing sacrilegious prayers. Please, take a seat and listen to the story.

Prayers at the foot of the Altar a.k.a. disclaimer

I promise my intention was to stay away from VBA for the rest of my life but sometimes the
duty calls and you can not ignore it. Probably I need a therapist at this point of my life.

A long time ago in a galaxy far far away…

Months ago I released on Twitter a small snippet of code with an implementation of
freshycalls technique to dynamically resolve System Service Numbers (a.k.a. syscalls
numbers), so you avoid to hardcode the values in your payloads when syscalling from your
maldoc. Something I did not like about my initial implementation is the fact that we can not
obfuscate the NtQueryInformationProcess declaration:

Private Declare PtrSafe Function NtQueryInformationProcess Lib "NTDLL" (_
ByVal hProcess As LongPtr, _
ByVal processInformationClass As Long, _
ByRef pProcessInformation As Any, _
ByVal uProcessInformationLength As Long, _
ByRef puReturnLength As LongPtr) As Long

Of course we can apply a light obfuscation, but is going to be sigged sooner or later. So, how
can we avoid it?

Well, I only use it to get the PPEB_LDR_DATA and initiate the process of parsing the different
structures until I get the export addresses. So if I can find an alternative way to get the dll
base address of ntdll.dll I can avoid its usage. But VBA does not give you any tool to get this
info directly (or at least I am not aware of it).

A déjà vu is usually a glitch in the Matrix

My theory is that if you use an inoffensive function (e.g. NtClose) inside a sub routine it will
leave traces somewhere in memory and we will able to retrieve the pointer to NtClose. Using
this pointer as a reference location we can start to scan backwards to find the DLL base
address.

https://adepts.of0x.cc/vba-exports-runtime/
https://twitter.com/TheXC3LL/status/1566575977219645452

2/16

VBA is dark and full of terrors. I am not brave enough to light a torch and walk through their
dark galleys. So I choose the most cowardly approach: create small snippets of code and
scan the memory with Cheat Engine. After three trials I identified a reliable way (at least in
my VM) to recover the address.

Basically I get the pointer of a variable used to store the output from NtClose and I apply an
offset of -0x10 to read a pointer from here. If we read the memory at this pointer we get the
location of NtClose:

Private Declare PtrSafe Sub CopyMemory Lib "KERNEL32" Alias "RtlMoveMemory" (_
 ByVal Destination As LongPtr, _
 ByVal Source As LongPtr, _
 ByVal Length As Long)

Private Declare PtrSafe Function NtClose Lib "ntdll" (ByVal ObjectHandle As LongPtr)
As Long

Dim ret As Long

Function leak() As LongPtr
 ret = NtClose(-1)
 Dim funcLeak As LongPtr
 Call CopyMemory(VarPtr(funcLeak), VarPtr(ret) - 16, 8)
 leak = funcLeak
End Function

Sub sh()
 MsgBox "NtClose @ 0x" + Hex(leak())
End Sub

NtClose Address

Finally I only need to start reading group of bytes backward until we find the DLL start. To do
it I save 8 bytes each time in a LongPtr variable and then I compare it with 12894362189 that
is 4D 5A 90 00 03 00 00 00 (the classic MZ…. header):

3/16

Private Declare PtrSafe Sub CopyMemory Lib "KERNEL32" Alias "RtlMoveMemory" (_
 ByVal Destination As LongPtr, _
 ByVal Source As LongPtr, _
 ByVal Length As Long)
Private Declare PtrSafe Function NtClose Lib "ntdll" (ByVal ObjectHandle As LongPtr)
As Long
Dim ret As Long
Function leak() As LongPtr
 ret = NtClose(-1)
 Dim funcLeak As LongPtr
 Call CopyMemory(VarPtr(funcLeak), VarPtr(ret) - 16, 8)
 leak = funcLeak
End Function

Function findntdll() As LongPtr
 Dim check As LongPtr
 Dim leaked As LongPtr
 Dim i As LongPtr

 leaked = leak()
 For i = 0 To (leaked - 8)
 Call CopyMemory(VarPtr(check), leaked - i, 8)
 ' 12894362189 == 00007FF889590000 4D 5A 90 00 03 00 00 00 MZ....
 If check = 12894362189# Then
 findntdll = leaked - i
 Exit For
 End If
 Next i
End Function

Sub test()
 MsgBox "ntdll.dll at 0x" + Hex(findntdll())
End Sub

NTDLL.DLL base address

Reduce, Reuse, Recycle

4/16

If you checked my freshycalls code you can see that it can be repurposed easily to get the
export addresses and construct our own GetProcAddress():

5/16

Option Explicit
Private Declare PtrSafe Function lstrlenW Lib "KERNEL32" (ByVal lpString As LongPtr)
As Long
Private Declare PtrSafe Function lstrlenA Lib "KERNEL32" (ByVal lpString As LongPtr)
As Long

Private Declare PtrSafe Sub CopyMemory Lib "KERNEL32" Alias "RtlMoveMemory" (_
 ByVal Destination As LongPtr, _
 ByVal Source As LongPtr, _
 ByVal Length As Long)
Private Declare PtrSafe Function NtClose Lib "ntdll" (ByVal ObjectHandle As LongPtr)
As Long

Private Type IMAGE_DOS_HEADER
 e_magic As Integer
 e_cblp As Integer
 e_cp As Integer
 e_crlc As Integer
 e_cparhdr As Integer
 e_minalloc As Integer
 e_maxalloc As Integer
 e_ss As Integer
 e_sp As Integer
 e_csum As Integer
 e_ip As Integer
 e_cs As Integer
 e_lfarlc As Integer
 e_ovno As Integer
 e_res(4 - 1) As Integer
 e_oemid As Integer
 e_oeminfo As Integer
 e_res2(10 - 1) As Integer
 e_lfanew As Long
End Type
Private Type IMAGE_DATA_DIRECTORY
 VirtualAddress As Long
 size As Long
End Type
Private Const IMAGE_NUMBEROF_DIRECTORY_ENTRIES = 16
Private Type IMAGE_OPTIONAL_HEADER
 Magic As Integer
 MajorLinkerVersion As Byte
 MinorLinkerVersion As Byte
 SizeOfCode As Long
 SizeOfInitializedData As Long
 SizeOfUninitializedData As Long
 AddressOfEntryPoint As Long
 BaseOfCode As Long
 ImageBase As LongLong
 SectionAlignment As Long

6/16

 FileAlignment As Long
 MajorOperatingSystemVersion As Integer
 MinorOperatingSystemVersion As Integer
 MajorImageVersion As Integer
 MinorImageVersion As Integer
 MajorSubsystemVersion As Integer
 MinorSubsystemVersion As Integer
 Win32VersionValue As Long
 SizeOfImage As Long
 SizeOfHeaders As Long
 CheckSum As Long
 Subsystem As Integer
 DllCharacteristics As Integer
 SizeOfStackReserve As LongLong
 SizeOfStackCommit As LongLong
 SizeOfHeapReserve As LongLong
 SizeOfHeapCommit As LongLong
 LoaderFlags As Long
 NumberOfRvaAndSizes As Long
 DataDirectory(IMAGE_NUMBEROF_DIRECTORY_ENTRIES - 1) As IMAGE_DATA_DIRECTORY
End Type
Private Type IMAGE_FILE_HEADER
 Machine As Integer
 NumberOfSections As Integer
 TimeDateStamp As Long
 PointerToSymbolTable As Long
 NumberOfSymbols As Long
 SizeOfOptionalHeader As Integer
 Characteristics As Integer
End Type
Private Type IMAGE_NT_HEADERS
 Signature As Long 'DWORD Signature;
 FileHeader As IMAGE_FILE_HEADER 'IMAGE_FILE_HEADER FileHeader;
 OptionalHeader As IMAGE_OPTIONAL_HEADER 'IMAGE_OPTIONAL_HEADER OptionalHeader;
End Type

Dim ret As Long

Private Function StringFromPointerW(ByVal pointerToString As LongPtr) As String
 Const BYTES_PER_CHAR As Integer = 2
 Dim tmpBuffer() As Byte
 Dim byteCount As Long
 ' determine size of source string in bytes
 byteCount = lstrlenW(pointerToString) * BYTES_PER_CHAR
 If byteCount > 0 Then
 'Resize the buffer as required
 ReDim tmpBuffer(0 To byteCount - 1) As Byte
 ' Copy the bytes from pointerToString to tmpBuffer
 Call CopyMemory(VarPtr(tmpBuffer(0)), pointerToString, byteCount)
 End If

7/16

 'Straigth assigment Byte() to String possible - Both are Unicode!
 StringFromPointerW = tmpBuffer
End Function
Public Function StringFromPointerA(ByVal pointerToString As LongPtr) As String

 Dim tmpBuffer() As Byte
 Dim byteCount As Long
 Dim retVal As String

 ' determine size of source string in bytes
 byteCount = lstrlenA(pointerToString)

 If byteCount > 0 Then
 ' Resize the buffer as required
 ReDim tmpBuffer(0 To byteCount - 1) As Byte

 ' Copy the bytes from pointerToString to tmpBuffer
 Call CopyMemory(VarPtr(tmpBuffer(0)), pointerToString, byteCount)
 End If

 ' Convert (ANSI) buffer to VBA string
 retVal = StrConv(tmpBuffer, vbUnicode)

 StringFromPointerA = retVal

End Function

Function leak() As LongPtr
 ret = NtClose(-1)
 Dim funcLeak As LongPtr
 Call CopyMemory(VarPtr(funcLeak), VarPtr(ret) - 16, 8)
 leak = funcLeak
End Function

Function findntdll() As LongPtr
 Dim check As LongPtr
 Dim leaked As LongPtr
 Dim i As LongPtr

 leaked = leak()
 For i = 0 To (leaked - 8)
 Call CopyMemory(VarPtr(check), leaked - i, 8)
 ' 12894362189 == 00007FF889590000 4D 5A 90 00 03 00 00 00 MZ....
 If check = 12894362189# Then
 findntdll = leaked - i
 Exit For
 End If
 Next i
End Function

Sub walkExports()

8/16

 Dim dllbase As LongPtr
 Dim DosHeader As IMAGE_DOS_HEADER
 Dim pNtHeaders As LongPtr
 Dim ntHeader As IMAGE_NT_HEADERS
 Dim DataDirectory As IMAGE_DATA_DIRECTORY
 Dim IMAGE_EXPORT_DIRECTORY As LongPtr
'http://pinvoke.net/default.aspx/Structures.IMAGE_EXPORT_DIRECTORY
 Dim NumberOfFunctions As Long
 Dim NumberOfNames As Long
 Dim FunctionsPtr As LongPtr
 Dim NamesPtr As LongPtr
 Dim OrdinalsPtr As LongPtr
 Dim FunctionsOffset As Long
 Dim NamesOffset As Long
 Dim OrdinalsOffset As Long
 Dim OrdinalBase As Long

 ' Get ntdll.dll base
 dllbase = findntdll

 ' Get DOS Header
 Call CopyMemory(VarPtr(DosHeader), dllbase, LenB(DosHeader))
 ' Get NtHeader
 pNtHeaders = dllbase + DosHeader.e_lfanew
 Call CopyMemory(VarPtr(ntHeader), pNtHeaders, LenB(ntHeader))

 IMAGE_EXPORT_DIRECTORY = ntHeader.OptionalHeader.DataDirectory(0).VirtualAddress
+ dllbase

 'Number of Functions pIMAGE_EXPORT_DIRECTORY + 0x14
 Call CopyMemory(VarPtr(NumberOfFunctions), IMAGE_EXPORT_DIRECTORY + &H14,
LenB(NumberOfFunctions))

 'Number of Names pIMAGE_EXPORT_DIRECTORY + 0x18
 Call CopyMemory(VarPtr(NumberOfNames), IMAGE_EXPORT_DIRECTORY + &H18,
LenB(NumberOfNames))

 'AddressOfFunctions pIMAGE_EXPORT_DIRECTORY + 0x1C
 Call CopyMemory(VarPtr(FunctionsOffset), IMAGE_EXPORT_DIRECTORY + &H1C,
LenB(FunctionsOffset))
 FunctionsPtr = dllbase + FunctionsOffset

 'AddressOfNames pIMAGE_EXPORT_DIRECTORY + 0x20
 Call CopyMemory(VarPtr(NamesOffset), IMAGE_EXPORT_DIRECTORY + &H20,
LenB(NamesOffset))
 NamesPtr = dllbase + NamesOffset

 'AddressOfNameOrdianls pIMAGE_EXPORT_DIRECTORY + 0x24
 Call CopyMemory(VarPtr(OrdinalsOffset), IMAGE_EXPORT_DIRECTORY + &H24,
LenB(OrdinalsOffset))
 OrdinalsPtr = dllbase + OrdinalsOffset

9/16

 'Ordinal Base pIMAGE_EXPORT_DIRECTORY + 0x10
 Call CopyMemory(VarPtr(OrdinalBase), IMAGE_EXPORT_DIRECTORY + &H10,
LenB(OrdinalBase))

 Dim j As Long
 Dim i As Long
 j = 0
 For i = 0 To NumberOfNames - 1
 Dim tmpOffset As Long
 Dim tmpName As String
 Dim tmpOrd As Integer
 ' Get name
 Call CopyMemory(VarPtr(tmpOffset), NamesPtr + (LenB(tmpOffset) * i),
LenB(tmpOffset))
 tmpName = StringFromPointerA(tmpOffset + dllbase)
 Cells(j + 1, 1) = tmpName
 'Get Ordinal
 Call CopyMemory(VarPtr(tmpOrd), OrdinalsPtr + (LenB(tmpOrd) * i),
LenB(tmpOrd))
 Cells(j + 1, 2) = tmpOrd + OrdinalBase
 'Get Address
 tmpOffset = 0
 Call CopyMemory(VarPtr(tmpOffset), FunctionsPtr + (LenB(tmpOffset) *
tmpOrd), LenB(tmpOffset))
 Cells(j + 1, 3) = Hex(tmpOffset + dllbase)
 j = j + 1
 Next i
End Sub

10/16

List of Exports

Now I have a poor man’s GetProcAddress(). Using the DispCallFunc trick is everything I
need to call arbitrary functions from DLLs that are loaded in Excell process. For example,
let’s combine all to move a file from Location A to Location B:

https://secureyourit.co.uk/wp/2020/11/28/vbafunctionpointers/

11/16

Option Explicit
Private Declare PtrSafe Function DispCallFunc Lib "OleAut32.dll" (ByVal pvInstance As
Long, ByVal offsetinVft As LongPtr, ByVal CallConv As Long, ByVal retTYP As Integer,
ByVal paCNT As Long, ByRef paTypes As Integer, ByRef paValues As LongPtr, ByRef
retVAR As Variant) As Long
Private Declare PtrSafe Function lstrlenW Lib "kernel32" (ByVal lpString As LongPtr)
As Long
Private Declare PtrSafe Function lstrlenA Lib "kernel32" (ByVal lpString As LongPtr)
As Long

Private Declare PtrSafe Sub CopyMemory Lib "kernel32" Alias "RtlMoveMemory" (_
 ByVal Destination As LongPtr, _
 ByVal Source As LongPtr, _
 ByVal Length As Long)
Private Declare PtrSafe Function CloseHandle Lib "kernel32" (ByVal ObjectHandle As
LongPtr) As Long

Private Type IMAGE_DOS_HEADER
 e_magic As Integer
 e_cblp As Integer
 e_cp As Integer
 e_crlc As Integer
 e_cparhdr As Integer
 e_minalloc As Integer
 e_maxalloc As Integer
 e_ss As Integer
 e_sp As Integer
 e_csum As Integer
 e_ip As Integer
 e_cs As Integer
 e_lfarlc As Integer
 e_ovno As Integer
 e_res(4 - 1) As Integer
 e_oemid As Integer
 e_oeminfo As Integer
 e_res2(10 - 1) As Integer
 e_lfanew As Long
End Type
Private Type IMAGE_DATA_DIRECTORY
 VirtualAddress As Long
 size As Long
End Type
Private Const IMAGE_NUMBEROF_DIRECTORY_ENTRIES = 16
Private Type IMAGE_OPTIONAL_HEADER
 Magic As Integer
 MajorLinkerVersion As Byte
 MinorLinkerVersion As Byte
 SizeOfCode As Long
 SizeOfInitializedData As Long
 SizeOfUninitializedData As Long

12/16

 AddressOfEntryPoint As Long
 BaseOfCode As Long
 ImageBase As LongLong
 SectionAlignment As Long
 FileAlignment As Long
 MajorOperatingSystemVersion As Integer
 MinorOperatingSystemVersion As Integer
 MajorImageVersion As Integer
 MinorImageVersion As Integer
 MajorSubsystemVersion As Integer
 MinorSubsystemVersion As Integer
 Win32VersionValue As Long
 SizeOfImage As Long
 SizeOfHeaders As Long
 CheckSum As Long
 Subsystem As Integer
 DllCharacteristics As Integer
 SizeOfStackReserve As LongLong
 SizeOfStackCommit As LongLong
 SizeOfHeapReserve As LongLong
 SizeOfHeapCommit As LongLong
 LoaderFlags As Long
 NumberOfRvaAndSizes As Long
 DataDirectory(IMAGE_NUMBEROF_DIRECTORY_ENTRIES - 1) As IMAGE_DATA_DIRECTORY
End Type
Private Type IMAGE_FILE_HEADER
 Machine As Integer
 NumberOfSections As Integer
 TimeDateStamp As Long
 PointerToSymbolTable As Long
 NumberOfSymbols As Long
 SizeOfOptionalHeader As Integer
 Characteristics As Integer
End Type
Private Type IMAGE_NT_HEADERS
 Signature As Long 'DWORD Signature;
 FileHeader As IMAGE_FILE_HEADER 'IMAGE_FILE_HEADER FileHeader;
 OptionalHeader As IMAGE_OPTIONAL_HEADER 'IMAGE_OPTIONAL_HEADER OptionalHeader;
End Type

Dim ret As Long

Private Function StringFromPointerW(ByVal pointerToString As LongPtr) As String
 Const BYTES_PER_CHAR As Integer = 2
 Dim tmpBuffer() As Byte
 Dim byteCount As Long
 ' determine size of source string in bytes
 byteCount = lstrlenW(pointerToString) * BYTES_PER_CHAR
 If byteCount > 0 Then
 'Resize the buffer as required

13/16

 ReDim tmpBuffer(0 To byteCount - 1) As Byte
 ' Copy the bytes from pointerToString to tmpBuffer
 Call CopyMemory(VarPtr(tmpBuffer(0)), pointerToString, byteCount)
 End If
 'Straigth assigment Byte() to String possible - Both are Unicode!
 StringFromPointerW = tmpBuffer
End Function
Public Function StringFromPointerA(ByVal pointerToString As LongPtr) As String

 Dim tmpBuffer() As Byte
 Dim byteCount As Long
 Dim retVal As String

 ' determine size of source string in bytes
 byteCount = lstrlenA(pointerToString)

 If byteCount > 0 Then
 ' Resize the buffer as required
 ReDim tmpBuffer(0 To byteCount - 1) As Byte

 ' Copy the bytes from pointerToString to tmpBuffer
 Call CopyMemory(VarPtr(tmpBuffer(0)), pointerToString, byteCount)
 End If

 ' Convert (ANSI) buffer to VBA string
 retVal = StrConv(tmpBuffer, vbUnicode)

 StringFromPointerA = retVal

End Function

Function leak() As LongPtr
 ret = CloseHandle(-1)
 Dim funcLeak As LongPtr
 Call CopyMemory(VarPtr(funcLeak), VarPtr(ret) - 16, 8)
 leak = funcLeak
End Function

Function findntdll() As LongPtr
 Dim check As LongPtr
 Dim leaked As LongPtr
 Dim i As LongPtr

 leaked = leak()
 For i = 0 To (leaked - 8)
 Call CopyMemory(VarPtr(check), leaked - i, 8)
 ' 12894362189 == 00007FF889590000 4D 5A 90 00 03 00 00 00 MZ....
 If check = 12894362189# Then
 findntdll = leaked - i
 Exit For
 End If
 Next i

14/16

End Function

Private Function walkExports(dllbase As LongPtr, export As String)
 Dim DosHeader As IMAGE_DOS_HEADER
 Dim pNtHeaders As LongPtr
 Dim ntHeader As IMAGE_NT_HEADERS
 Dim DataDirectory As IMAGE_DATA_DIRECTORY
 Dim IMAGE_EXPORT_DIRECTORY As LongPtr
'http://pinvoke.net/default.aspx/Structures.IMAGE_EXPORT_DIRECTORY
 Dim NumberOfFunctions As Long
 Dim NumberOfNames As Long
 Dim FunctionsPtr As LongPtr
 Dim NamesPtr As LongPtr
 Dim OrdinalsPtr As LongPtr
 Dim FunctionsOffset As Long
 Dim NamesOffset As Long
 Dim OrdinalsOffset As Long
 Dim OrdinalBase As Long

 ' Get DOS Header
 Call CopyMemory(VarPtr(DosHeader), dllbase, LenB(DosHeader))
 ' Get NtHeader
 pNtHeaders = dllbase + DosHeader.e_lfanew
 Call CopyMemory(VarPtr(ntHeader), pNtHeaders, LenB(ntHeader))

 IMAGE_EXPORT_DIRECTORY = ntHeader.OptionalHeader.DataDirectory(0).VirtualAddress
+ dllbase

 'Number of Functions pIMAGE_EXPORT_DIRECTORY + 0x14
 Call CopyMemory(VarPtr(NumberOfFunctions), IMAGE_EXPORT_DIRECTORY + &H14,
LenB(NumberOfFunctions))

 'Number of Names pIMAGE_EXPORT_DIRECTORY + 0x18
 Call CopyMemory(VarPtr(NumberOfNames), IMAGE_EXPORT_DIRECTORY + &H18,
LenB(NumberOfNames))

 'AddressOfFunctions pIMAGE_EXPORT_DIRECTORY + 0x1C
 Call CopyMemory(VarPtr(FunctionsOffset), IMAGE_EXPORT_DIRECTORY + &H1C,
LenB(FunctionsOffset))
 FunctionsPtr = dllbase + FunctionsOffset

 'AddressOfNames pIMAGE_EXPORT_DIRECTORY + 0x20
 Call CopyMemory(VarPtr(NamesOffset), IMAGE_EXPORT_DIRECTORY + &H20,
LenB(NamesOffset))
 NamesPtr = dllbase + NamesOffset

 'AddressOfNameOrdianls pIMAGE_EXPORT_DIRECTORY + 0x24
 Call CopyMemory(VarPtr(OrdinalsOffset), IMAGE_EXPORT_DIRECTORY + &H24,
LenB(OrdinalsOffset))
 OrdinalsPtr = dllbase + OrdinalsOffset

 'Ordinal Base pIMAGE_EXPORT_DIRECTORY + 0x10

15/16

 Call CopyMemory(VarPtr(OrdinalBase), IMAGE_EXPORT_DIRECTORY + &H10,
LenB(OrdinalBase))

 Dim i As LongPtr
 For i = 0 To NumberOfNames - 1
 Dim tmpOffset As Long
 Dim tmpName As String
 Dim tmpOrd As Integer
 ' Get name
 Call CopyMemory(VarPtr(tmpOffset), NamesPtr + (LenB(tmpOffset) * i),
LenB(tmpOffset))
 tmpName = StringFromPointerA(tmpOffset + dllbase)
 'Get Ordinal
 Call CopyMemory(VarPtr(tmpOrd), OrdinalsPtr + (LenB(tmpOrd) * i),
LenB(tmpOrd))
 'Get Address
 tmpOffset = 0
 Call CopyMemory(VarPtr(tmpOffset), FunctionsPtr + (LenB(tmpOffset) * tmpOrd),
LenB(tmpOffset))
 If tmpName = export Then
 walkExports = tmpOffset + dllbase
 Exit For
 End If
 Next i
End Function

Public Function stdCallA(address As LongPtr, ByVal RetType As VbVarType, ParamArray
P() As Variant)
 Dim CC_STDCALL As Integer
 Dim VType(0 To 63) As Integer, VPtr(0 To 63) As LongPtr
 Dim i As Long, pFunc As Long, V(), HRes As Long
 ReDim V(0)
 CC_STDCALL = 4

 V = P

 For i = 0 To UBound(V)
 If VarType(P(i)) = vbString Then P(i) = StrConv(P(i), vbFromUnicode): V(i) =
StrPtr(P(i))
 VType(i) = VarType(V(i))
 VPtr(i) = VarPtr(V(i))
 Next i

 HRes = DispCallFunc(0, address, CC_STDCALL, RetType, i, VType(0), VPtr(0),
stdCallA)

End Function

Sub test()
 Dim dllbase As LongPtr
 Dim lResult As Long
 Dim func01 As LongPtr 'CopyFileA

16/16

 'Find kernel32.dll base
 dllbase = findntdll
 func01 = walkExports(dllbase, "CopyFileA")
 MsgBox Hex(func01)
 lResult = stdCallA(func01, vbLong, "C:\Users\vagrant\tests\TestA",
"C:\Users\vagrant\tests\testB", 0)
End Sub

Is not beautiful?

EoF

We hope you enjoyed this reading! Feel free to give us feedback at our twitter
@AdeptsOf0xCC.

PS.: Remember to wear your NBQ suit before touching VBA

https://twitter.com/AdeptsOf0xCC

