Shellcode: Recycling Compression Algorithms for the
Z80, 8088, 6502, 8086, and 68K Architectures.

. modexp.wordpress.com/2020/05/27/komposite-shellcode

By odzhan May 27, 2020

Recycling Compression Algorithms for the Z80, 8088, 6502, 8086, and 68K Architectures.

Contents

1. Introduction

My last post about compression inadvertently missed algorithms used by the Demoscene that
I attempt to correct here. Except for research by Introspec about various 8-Bit algorithms on
the ZX Spectrum, it’s tricky to find information in one location about compression used in
Demoscene productions. The focus here will be on variations of the Lempel-Ziv (L.Z) scheme
published in 1977 that are suitable for resource-constrained environments such as 8, 16, and
32-bit home computers released in the 1980s. In executable compression, we can consider LZ
an umbrella term for LZ77, LZSS, LZB, LZH, LZARI, and any other algorithms inspired by
those designs.

Many variations of LZ surfaced in the past thirty years, and a detailed description of them all
would be quite useful for historical reference. However, the priority for this post is exploring
algorithms with the best ratios that also use the least amount of code possible for
decompression. Considerations include an open-source compressor and the speed of
compression and decompression. However, some decoders without sources for a compressor
are also useful to show the conversion between architectures.

Drop me an email, if you would like to provide feedback on this post. x86 assembly codes for
some of algorithms discussed here may be found here.

2. History

Designing a compression format requires trade-offs, such as compression
ratio, compression speed, decompression speed, code complexity, code size,
memory usage, etc. For executable compression in particular, where the sum
of decompression code size and compressed size is what counts, the optimal
balance between these two depends on the intended target size. — Aske Simon
Christensen, author of Shrinkler and co-author of Crinkler.

Since the invention of telegraphy, telephony, and especially television, engineers have sought
ways to reduce the bandwidth required for transmitting electrical signals. Before the
invention of analog-to-digital converters and entropy coding methods in the 1950s,

1/70


https://modexp.wordpress.com/2020/05/27/komposite-shellcode/
https://modexp.wordpress.com/2019/12/08/shellcode-compression/
https://en.wikipedia.org/wiki/Demoscene
http://www.pouet.net/user.php?who=95769
http://hype.retroscene.org/blog/dev/740.html
https://www.worldofspectrum.org/
https://modexp.wordpress.com/about/
https://github.com/odzhan/shellcode/tree/master/compression
https://github.com/askeksa
https://github.com/askeksa/Shrinkler
http://www.crinkler.net/
https://en.wikipedia.org/wiki/Analog-to-digital_converter

compaction of television signals required reducing the quality of the video before
transmission, a technique that’s referred to as lossy compression. Many publications on
compressing television signals surfaced between the 1950s-1970s, and these eventually
proved to be useful in other applications, most notably for the aerospace industry.

For example, various interplanetary spacecraft launched in the 1960s could record data faster
than what they could transmit to earth. And following a review of unclassified space missions
in the early 1960s, in particular, the Mariner Mars mission of 1964, NASA’s Jet Propulsion
Laboratory examined various compression methods for acquiring images in space. The first
unclassified spacecraft to use image compression was Explorer 34 or Interplanetary
Monitoring Platform 4 (IMP-4) launched in 1967. It used Chroma subsampling, invented in
the 1950s specifically for color television. This method, which eventually became part of the
JPEG standard, would continue being used by NASA until the invention of a more optimal
encoding method called Discrete Cosine Transform (DCT)

The increase of computer mainframes in the 1950s and the collection of data on citizens for
social science motivated prior research and development of lossless compression techniques.
Microprocessors became inexpensive in the late 1970s, leading the way for average
consumers to purchase a computer of their own. However, this didn’t immediately reduce the
cost of disk storage. And the vast majority of user data remained stored on magnetic tapes or
floppy diskettes rather than hard disk drives offered only as an optional component.

Hard disk drives remained expensive between 1980-2000, encouraging the development of
tools to reduce the size of files. The first program to compress executables on the PC was
Realia Spacemaker, which was written by Robert Dewar and published in 1982. The precise
algorithm used by this program remains undocumented. However, the year of publication
would suggest it uses Run-length encoding (RLE). Qkumba informed me about two things
via email. First, games for the Apple IT used RLE in the early 1980s for shrinking images used
as title screens. Examples include Beach-Head, G.1. Joe and Black Magic, to name a few.
Second, games by Infocom used Huffman-like text compression. Microsoft EXEPACK by
Reuben Borman and published in 1985 also used RLE for compression.

Haruhiko Okumura uploaded an implementation of the LZSS compression algorithm to a
Bulletin Board System (BBS) in 1988. Inspired by Okumura, Fabrice Bellard published
LZEXE in 1989, which appears to be the first executable compressor to use LZSS.

3. Entropy Coding

Samuel Morse published his coding system for the electrical telegraph in 1838. It assigned
short symbols for the most common letters of an alphabet, and this may be the first example
of compression used for electrical signals. An entropy coder works similarly. It removes
redundancy by assigning short codewords for symbols occurring more frequently and longer
codewords for symbols with less frequency. The following table lists some examples.

2/70


https://dl.acm.org/doi/10.1109/TIT.1967.1053949
https://commons.erau.edu/cgi/viewcontent.cgi?article=2698&context=space-congress-proceedings
https://mars.nasa.gov/mars-exploration/missions/mariner-3-4/
https://en.wikipedia.org/wiki/Explorer_34
https://en.wikipedia.org/wiki/Chroma_subsampling
https://en.wikipedia.org/wiki/Nasir_Ahmed_(engineer)
http://www.os2museum.com/wp/realia-spacemaker/
https://en.wikipedia.org/wiki/Robert_Dewar
http://pferrie.epizy.com/?i=1Q
https://en.wikipedia.org/wiki/Beach_Head_(video_game)
https://en.wikipedia.org/wiki/G.I._Joe:_A_Real_American_Hero_(video_game)
https://en.wikipedia.org/wiki/Black_Magic_(video_game)
http://www.infocom-if.org/games/games.html
http://www.os2museum.com/wp/exepack-and-the-a20-gate/
https://twitter.com/h_okumura
https://oku.edu.mie-u.ac.jp/~okumura/compression/history.html
https://bellard.org/
https://bellard.org/lzexe.html

Type Publication and Author

Shannon A Mathematical Theory of Communication published in 1948 by Claude E.
Shannon.

Huffman A Method for the Construction of Minimum Redundancy Codes published in
1952 by David A. Huffman.

Arithmetic Generalized Kraft Inequality and Arithmetic Coding published in 1976 by
Jorma Rissanen.

Range There are two papers of interest here. One is Source Coding_Algorithms for
Fast Data Compression published in 1976 by Richard Clark Pasco. The other
is Range encoding: An Algorithm for Removing Redundancy from a Digitised
Message published in 1979 by G.N.N. Martin.

ANS Asymmetric Numeral Systems: Entropy Coding_ Combining_Speed of Huffman
Coding with Compression Rate of Arithmetic Coding published in 2014 by
Jarostaw Duda.

Arithmetic or range coders fused with an LZ77-style compressor result in high compression
ratios and compact decompressors, which makes them attractive to the demoscene. They are
slower than a Huffman coder, but much more efficient. ANS is the favored coder used in
mission-critical systems today, providing efficiency and speed.

4. Universal Code

There are many variable-length coding methods used for integers of arbitrary upper bound,
and most of the algorithms presented in this post use Elias gamma coding for the offset and
length of a match reference. The following table contains a list of papers referenced in
Punctured Elias Codes for variable-length coding of the integers published by Peter Fenwick
in 1996.

Coding Author and publication

Golomb Run-length encodings published in 1966 by Solomon W. Golomb.

Levenshtein On the redundancy and delay of separable codes for the natural numbers.
published in 1968 by Vladimir |. Levenshtein.

Elias Universal Codeword Sets and Representations of the Integers published in
1975 by Peter Elias.

Rodeh- Economical Encoding_of Commas Between Strings published in 1978 by
Even Michael Rodeh and Shimon Even.
Rice Some Practical Universal Noiseless Coding_Techniques published in 1979

by Robert F. Rice.

3/70


http://people.math.harvard.edu/~ctm/home/text/others/shannon/entropy/entropy.pdf
https://www.itsoc.org/about/shannon
https://www.ic.tu-berlin.de/fileadmin/fg121/Source-Coding_WS12/selected-readings/10_04051119.pdf
https://en.wikipedia.org/wiki/David_A._Huffman
https://pdfs.semanticscholar.org/9fcb/8d85e3d429f3816861fc7999e1bb68eefd39.pdf
https://cml.rhul.ac.uk/people/rissanen/
https://www.richpasco.org/scaffdc.pdf
https://www.richpasco.org/
http://www.compressconsult.com/rangecoder/#download
https://arxiv.org/pdf/1311.2540.pdf
http://th.if.uj.edu.pl/~dudaj/
http://www.firstpr.com.au/audiocomp/lossless/TechRep137.pdf
https://www.cs.auckland.ac.nz/~peter-f/
https://ieeexplore.ieee.org/document/1053907
https://writings.stephenwolfram.com/2016/05/solomon-golomb-19322016/
http://www.compression.ru/download/articles/int/levenstein_1968_on_the_redundancy_and_delay.pdf
https://www.keldysh.ru/departments/dpt_10/lev.html
https://ieeexplore.ieee.org/document/1055349
https://www.nae.edu/29439/Dr-Peter-Elias
https://dl.acm.org/doi/pdf/10.1145/359460.359480
https://dblp.uni-trier.de/pers/r/Rodeh:Michael.html
http://www.wisdom.weizmann.ac.il/~oded/even-tech03.html
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19790014634.pdf
https://www.researchgate.net/scientific-contributions/5854241_Robert_F_Rice

5. Lempel-Ziv (LZ77/LZ1)

Designed by Abraham Lempel and Jacob Ziv and described in A Universal Algorithm for
Sequential Data Compression published in 1977. It compresses files by searching for the
repetition of strings or sequences of bytes and storing a reference pointer and length to an
earlier occurrence. The size of a reference pointer and length will define the overall speed of
the compression and compression ratio. The following decoder uses a 12-Bit reference
pointer (4096 bytes) and 4-Bit length (16 bytes). It will work with a a compressor written by
Andy Herbert. However, you must change the compressor to use 16-bits for a match
reference. Charles Bloom discusses small L.Z decoders in a blog post that may be of interest to
readers.

uint32_t 1z77_depack(
void *outbuf,
uint32_t outlen,
const void *inbuf)
{
uint32_t ofs, len;
uint8_t *in, *out, *end, *ptr;

in
out
end

(uint8_t*)inbuf;
(uint8_t*)outbuf;
out + outlen;

while(out < end) {
len = *(uintl16_t*)in;
in += 2;
ofs = len >> 4;

// offset?
if(ofs) {
// copy reference
len = (len & 15) + 1;
ptr = out - ofs;
while(len--) *out++ = *ptr++;
}
// copy literal
*out++ = *in++;
}
// return depacked length
return (out - (uint8_t*)outbuf);

}

The assembly is optimized for size, currently at 54 bytes.

4/70


http://www.cs.technion.ac.il/people/lempel/
https://www.researchgate.net/profile/Jacob_Ziv
https://www2.cs.duke.edu/courses/spring03/cps296.5/papers/ziv_lempel_1977_universal_algorithm.pdf
https://github.com/andyherbert/lz1
https://github.com/andyherbert
http://cbloomrants.blogspot.com/2011/10/10-27-11-tiny-lz-decoder.html

1z77_depack:
_1z77_depack:

pushad
lea esi, [esp+32+4]
lodsd
xchg edi, eax ; edi = outbuf
lodsd
lea ebx, [eax+edi] ; ebx = outlen + outbuf
lodsd
xchg esi, eax ; esi = inbuf
xor eax, eax
1z77_main:
cmp edi, ebx ; while (out < end)

jnb 1z77_exit

lodsw ; ofs = *(uintl6_t*)in;
movzx ecx, al ; len = ofs & 15;
shr eax, 4 ; ofs >>= 4;
jz 1z77_copybyte
and ecx, 15
inc ecx ; len++;
push esi
mov esi, edi ; ptr = out - ofs;
sub esi, eax
rep movsb ; while(len--) *out++ = *ptr++;
pop esi
1z77_copybyte:
movsb ; *out++ = *src++;
jmp 1z77_main
1z77_exit:

; return (out - (uint8_t*)outbuf);
sub edi, [esp+32+4]

mov [esp+28], edi

popad

ret

6. Lempel-Ziv-Storer-Szymanski (LZSS)

Designed by James Storer, Thomas Szymanski, and described in Data Compression via
Textual Substitution published in 1982. The match reference in the LZ77 decoder occupies
16-bits or two bytes even when no match exists. That means for every literal are two
additional redundant bytes, which isn’t very efficient. LZSS improves the LZ77 format by
using one bit to distinguish between a match reference and a literal, and this improves the
overall compression ratio. Introspec informed me via email the importance of this paper in
describing the many variations of the original LZ77 scheme. Many of which remain
unexplored. It also has an overview of the early literature, which is worth examining in more

5/70


https://www.cs.brandeis.edu/~storer/
https://dblp.org/pers/s/Szymanski:Thomas_G=.html
https://dl.acm.org/doi/10.1145/322344.322346

detail. Haruhiko Okumura shared his implementations of LZSS via a BBS in 1988, and this
inspired the development of various executable compressors released in the late 1980s and
1990s. The following decoder works with a compressor by Sebastian Steinhauer.

6/70


https://oku.edu.mie-u.ac.jp/~okumura/
https://oku.edu.mie-u.ac.jp/~okumura/compression/1988.html
https://github.com/kieselsteini/lzss
https://github.com/kieselsteini

// to keep track of flags
typedef struct _lzss_ctx_t {

uint8_t w;
uint8_t *in;

} lzss_ctx;

// read a bit
uint8_t get_bit(lzss_ctx *c) {

uint8_t x;

X = C->W;
c->w <<= 1;

if(c->w == 0) {

X = *c->in++;

c->w = (x << 1) | 1;
}

return x >> 7,

uint32_t 1zss_depack(

{

void *outbuf,
uint32_t outlen,
const void *inbuf)

uint8_t *out, *end, *ptr;
uint32_t i, ofs, len;
lzss_ctx c;

// initialize pointers
out = (uint8_t*)outbuf;
end = out + outlen;

// initialize context
c.in = (uint8_t*)inbuf;
c.w = 128;

while(out < end) {
// if bit is not set
if(!get_bit(&c)) {
// store literal
*out++ = *c.in++;
} else {
// decode offset and length
ofs = *(uintl6_t*)c.in;
c.in += 2;
len = (ofs & 15) + 3;
ofs >>= 4;
ptr = out - ofs - 1;
// copy bytes
while(len--) *out++ = *ptr++;
}

}
// return length

7/70



return (out - (uint8_t*)outbuf);
}

The assembly is a straight forward translation of the C code, currently at 69 bytes.

1zss_depackx:
_1zss_depackx:

pushad
lea esi, [esp+32+4]
lodsd
xchg edi, eax ; edi = outbuf
lodsd
lea ebx, [edi+eax] ; ebx = edi + outlen
lodsd
xchg esi, eax ; esi = inbuf
mov al, 128 ; set flags
lzss_main:
cmp edi, ebx ; while(out < end)
jnb 1zss_exit
add al, al ; C->wW <<= 1
jnz 1zss_check_bit
lodsb ; C->W = *c->in++;
adc al, al
1zss_check_bit:
jc read_pair ; if bit set, read len,offset
movsbh ; fout++ = *c.in++;
jmp 1zss_main
read_pair:
movzx edx, word[esi] ; ofs = *(uintl16_t*)c.in;
add esi, 2 ; c.in += 2;
mov ecx, edx ; len = (ofs % LEN_SIZE) + LEN_MIN;
and ecx, 15 ;
add ecx, 3 ;
shr edx, 4 ; ofs >>= 4
push esi
lea esi, [edi-1] ; ptr = out - ofs - 1;
sub esi, edx ;
rep movsb ; while(len--) *out++ = *ptr++;
pop esi
jmp 1zss_main
lzss_exit:

; return (out - (uint8_t*)outbuf);
sub edi, [esp+32+4]

mov [esp+28], edi

popad

ret

7. Lempel-Ziv-Bell (LZB)

8/70



Designed by Tim Bell and described in his 1986 Ph.D. dissertation A Unifying Theory and
Improvements for Existing Approaches to Text Compression. It uses a pre-processor based
on LZSS and Elias gamma coding of the match length, which results in a compression ratio
similar to LZH and LZARI by Okumura. However, it does not suffer the performance penalty
of using Huffman or arithmetic coding. Introspec considers it to be the first implementation
that uses variable-length coding for reference matches, which is the basis for most modern
LZ77-style compressors.

A key exhibit in a $300 million lawsuit brought by Stac Electronics (SE) against Microsoft
was Bell’s thesis. The 1993 case centered around a disk compression utility included with
MS-DOS 6.0 called DoubleSpace. SE accused Microsoft of patent violations by using the
same compression technologies used in its Stacker product. The courts agreed, and SE were
awarded $120 million in compensatory damages.

8. Intel 8088 / 8086

For many years, bigger nerds than myself would remind me of what a mediocre architecture
the x86 is and that it didn’t deserve to be the most popular CPU for personal computers. But
if it’s so bad, how did it become the predominant architecture? It probably commenced in the
1970s with the release of the 8080, and an operating system designed for it by Gary Kildall
called Control Program Monitor or Control Program for Microcomputers (CP/M).

Year Model Data Width (bits) Address Width (bits)

1971 4004 4 12
1972 8008 8 14
1974 4040 4 12
1974 8080 8 16
1976 8085 8 16
1978 8086 16 20
1979 8088 8 20

Kildall initially designed and developed CP/M for the 8-Bit 8080 and licensed it to run
devices such as the IMSAI 8080 (seen in the movie Wargames). Kildall was motivated by the
enormous potential for microcomputers to become regular home appliances. And when IBM
wanted to build a microcomputer of its own in 1980, CP/M was the most successful operating
system on the market.

9/70


http://www.cosc.canterbury.ac.nz/tim.bell/
https://ir.canterbury.ac.nz/handle/10092/8411
https://oku.edu.mie-u.ac.jp/~okumura/compression/history.html
http://www.techhelpmanual.com/787-doublespace_overview.html
https://web.archive.org/web/20070509205650/http://www.vaxxine.com/lawyers/articles/stac.html
https://www.latimes.com/archives/la-xpm-1994-02-24-fi-26671-story.html
https://computerhistory.org/blog/in-his-own-words-gary-kildall/
http://www.cpu-world.com/CPUs/4004/index.html
http://www.cpu-world.com/CPUs/8008/index.html
http://www.cpu-world.com/CPUs/4040/index.html
http://www.cpu-world.com/CPUs/8080/index.html
http://www.cpu-world.com/CPUs/8085/index.html
http://www.cpu-world.com/CPUs/8086/index.html
http://www.cpu-world.com/CPUs/8088/index.html
https://www.youtube.com/watch?v=sDIK-C6dGks
https://www.imsai.net/
https://www.imdb.com/title/tt0086567/

IBM made two decisions: use the existing software and hardware for the 8085-based IBM
System/23 by using the 8088 instead of the 8086. (the cost per CPU unit was also a factor);
and use its product to run CP/M to remain competitive with other microcomputers on the
market.

Regrettably, Kildall missed a unique opportunity to supply CP/M for the IBM Personal
Computer. Instead, Bill Gates / Microsoft obtained licensing to use a cloned version of CP/M
called the Quick and Dirty Operating System (QDOS). QDOS was later rebranded to 86-DOS,
before being shipped with the first IBM PC as “IBM PC DOS”. Microsoft later purchased 86-
DOS, rebranded it Microsoft Disk Operating System (MS-DOS), and forced IBM into a
licensing agreement so Microsoft were free to sell MS-DOS to other companies. Kildall would
later remark in his unpublished memoir Computer Connections, People, Places, and Events
in the Evolution of the Personal Computer Industry. that “Gates is more an opportunist
than a technical type and severely opinionated even when the opinion he holds
is absurd.”

8.1 LZE

Designed by Fabrice Bellard in 1989 and included in the closed-source MS-DOS packer
LZEXE by the same. Inspired by LZSS but provides a higher compression ratio. Hiroaki Goto
reverse engineered this in 1995 and published an open-source implementation in 2008. The
following is a 32-Bit translation of the 16-Bit decoder with some additional optimizations.
There’s also a 68K version for anyone interested and a Z80 version by Kei Moroboshi
published in 2017.

10/70


http://oldcomputers.net/ibm5322.html
https://www.youtube.com/watch?v=aQkn24he2rY
https://en.wikipedia.org/wiki/86-DOS
https://d1yx3ys82bpsa0.cloudfront.net/kildall-p.1-78-publishable-lowres.pdf
https://bellard.org/
https://bellard.org/lzexe.html
https://github.com/gorry
http://gorry.haun.org/pw/index.php?lze
https://github.com/uniabis/lzee
https://twitter.com/kmoroboshi

1ze_depack:

_l1ze_depack:
pushad
mov edi, [esp+32+4] ; edi = out
mov esi, [esp+32+8] ; esi = in

call init_get_bit

lze_get_bit:
add dl, dl ;
jnz exit_get_bit
mov dl, [esi] ; dl = *src++;
inc esi
rcl dl, 1
exit_get_bit:
ret
init_get_bit:
pop ebp
mov dl, 128
1ze_cl:
movshb
lze_main:
call ebp ; if(get_bit()) continue;
jc lze_cl
call ebp ; if(get_bit()) {
jc lze_copy3
xor ecx, ecx ; len = 0
call ebp ; get_bit()
adc ecx, ecx
call ebp ; get_bit()
adc ecx, ecx
lodsb ; a.b[0] = *in++;
mov ah, -1 ; a.b[1] = OxFF;
1ze_copy1:
inc ecx ;o len++;
jmp 1ze_copy2
lze_copy3: ; else
lodsw
xchg al, ah
mov ecx, eax
shr eax, 3 ; ofs /= 8
or ah, 0e0Oh
and ecx, 7 ; len %= 8
jnz 1ze_copyl
mov cl, [esi] ; len = *src++;
inc esi
;. EOF?
jecxz lze_exit ; if(len == 0) break;
1ze_copy2:

movsx eax, ax

11/70



push esi

lea esi, [edit+eax]
inc ecx
rep movsb
pop esi
jmp 1ze_main
; return (out - (uint8_t*)outbuf);
lze_exit:
sub edi, [esp+32+4]
mov [esp+28], edi
popad
ret
8.2L24

Designed by Yann Collet and published in 2011. LZ4 is fast for both compression and
decompression with a small decoder. Speed is somewhere between DEFLATE and LZO, while
the compression ratio is similar to LZO but worse than DEFLATE. Despite the compression
ratio being worse than DEFLATE, LZ4 doesn’t require a Huffman or arithmetic/range
decoder. The following 32-Bit code is a conversion of the 8088/8086 implementation by
Trixter. Jorgen Ibsen has implemented LZ4 with optimal parsing using Briefl.Z algorithms.

12/70


https://twitter.com/cyan4973
https://lz4.github.io/lz4/
https://github.com/lz4
https://tools.ietf.org/rfc/rfc1951.txt
http://www.oberhumer.com/opensource/lzo/
http://www.oldskool.org/pc/lz4_8088/
https://twitter.com/mobygamer
https://twitter.com/twibsen
https://github.com/jibsen/blz4
https://github.com/jibsen/brieflz

1z4_depack:

_1z4_depack:

pushad

lea esi, [esp+32+4]

lodsd

xchg eax, edi

lodsd

xchg eax, ebx

lodsd

xchg eax,esi

add ebx, esi

xor ecx, ecx
@@parsetoken:

mul ecx

lodsb

mov dl,al
@@copyliterals:

shr al, 4

call buildfullcount
@@doliteralcopy:

rep movsb

;At this point, we might be

;offset token is ignored.

target buffer

= chunk length minus header

source buffer

threshold to stop decompression
here because of REP at end of loop

;grab token to AL
;preserve packed token in DX

;unpack upper 4 bits

;build full literal count if necessary

;src and dst might overlap so do this by bytes
;1f cx=0 nothing happens

done; all LZ4 data ends with five literals and the
If we're at the end of our compressed chunk, stop.

cmp esi, ebx ;are we at the end of our compressed chunk?
jae done ;if so, jump to exit; otherwise, process match
@@copymatches:
lodsw ;AX = match offset
xchg edx, eax ;AX = packed token, DX = match offset
and al, OFh ;unpack match length token
call buildfullcount ;build full match count if necessary
@@domatchcopy:
push esi ;ds:si saved, xchg with ax would destroy ah
mov esi,edi
sub esi, edx
add ecx, 4 ;minmatch = 4
;Can't use MOVSWx2 because [es:di+1l] is unknown
rep movsb ;copy match run if any left
pop esi
jmp @@parsetoken
buildfullcount:
;CH has to be 0 here to ensure AH remains 0
cmp al, OFh ;test if unpacked literal length token is 157
xchg ecx, eax ;CX = unpacked literal length token; flags unchanged
jne builddone ;if AL was not 15, we have nothing to build
buildloop:
lodsb ;load a byte
add ecx, eax ;add it to the full count
cmp al, OFFh ;was it FF?
je buildloop ;if so, keep going
builddone:
ret
done:
sub edi, [esp+32+4];subtract original offset from where we are now
mov [esp+28], edi

13/70



popad
ret

8.3 LZSA

Designed by Emmanuel Marty with participation from Introspec and published in 2018.
Introspec explains the difference between the two formats, LZSA1 and LZSA2.

LZSA1 is designed to directly compete with LZ4. If you compress using “lzsa -f1 -
r INPUT OUTPUT”, you are very likely to get higher compression ratio than LZ4
and probably slightly lower decompression speed compared to LZ4 (I am
comparing speeds of LZSA1 fast decompressor and LZ4 fast decompressor, both
hand-tuned by myself). If you really want to compete with LZ4 on speed, you
need to compress using one of the “boost” options “lzsa -f1 -r -m4 INPUT
OUTPUT” (better ratio, similar speed to LZ4) or “lzsa -f1 -r -m5 INPUT
OUTPUT” (similar ratio, faster decompression than 1L.Z4).

LZSAz2 is approximately in the same league as BitBuster or ZX7. It’s likely to be
worse if you’re compressing pure graphics (at least this is what we are seeing on
ZX Spectrum), but it has much larger window and is pretty decent at
compressing mixed data (e.g. a complete game binary or something similar).
We accepted that the compression ratio is not the best because we wanted to
preserve some of its speed. You should expect LZSA2 to decompress data about
50% faster than best I can do for ZX7. I did not do tests on BitBuster, but I just
had a look at decompressor for ver.1.2 and there is no way it can compete with
LZSA2 on speed.

14/70


https://github.com/emmanuel-marty
https://github.com/emmanuel-marty/lzsa
https://cpcrulez.fr/forum/viewtopic.php?f=4&t=6237&start=15#p54737
https://www.teambomba.net/bombaman/downloadd26a.html

1zsal_decompress:
_1zsal_decompress:

pushad

mov edi, [esp+32+4]

mov esi, [esp+32+8]

xor ecx, ecx
.decode_token:

mul ecx

lodsb

mov dl, al

and al, O70H
shr al, 4

cmp al, O7H

jne .got_literals
go copy

lodsb

add al, O7H

jnc .got_literals
copy

jne .mid_literals

lodsw

jmp .got_literals

.mid_literals:
lodsb
inc ah

.got_literals:
xchg ecx, eax

rep movsb

test dl, dl

js .get_long_offset
dec ecx

xchg eax, ecx

lodsb

jmp .get_match_length

.get_long_offset:
lodsw

.get_match_length:

xchg eax, edx

and al, OFH

add al, 3

cmp al, 012H

jne .got_matchlen

v oedi
; esi

outbuf
inbuf

read token byte: O|LLL|MMMM
keep token in dl

; isolate literals length in token (LLL)

shift literals length into place

LITERALS_RUN_LEN?
no, we have the full literals count from the token,

; grab extra length byte
; add LITERALS_RUN_LEN
; if no overflow, we have the full literals count, go

; grab 16-bit extra length

; grab single extra length byte
; add 256

; copy cx literals from ds:si to es:di

; check match offset size in token (0 bit)

; clear ah - cx is zero from the rep movsb above

; Get 2-byte match offset

; edx: match offset eax: original token
; isolate match length in token (MMMM)
; add MIN_MATCH_SIZE

; MATCH_RUN_LEN?

no, we have the full match length from the token, go

15/70



copy

lodsb ; grab extra length byte

add al, 012H ; add MIN_MATCH_SIZE + MATCH_RUN_LEN

jnc .got_matchlen ; if no overflow, we have the entire length
jne .mid_matchlen

lodsw ; grab 16-bit length

test eax, eax ; bail if we hit EOD

je .done_decompressing

jmp .got_matchlen

.mid_matchlen:
lodsb ; grab single extra length byte
inc ah ; add 256

.got_matchlen:

xchg ecx, eax ; copy match length into ecx

xchg esi, eax

mov esi, edi ; esi now points at back reference in output data
movsXx edx, dx ; sign-extend dx to 32-bits.

add esi, edx

rep movsb ; copy match

xchg esi, eax ; restore esi

jmp .decode_token ; go decode another token

.done_decompressing:
sub edi, [esp+32+4]

mov [esp+28], edi ; eax = decompressed size
popad
ret ; done

8.4 aPLib

Designed by Jorgen Ibsen and published in 1998, it continues to remain a closed-source
compressor. Fortunately, an open-source version of the compressor called aPUltra is
available, which was released by Emmanuel Marty in 2019. The small compressor in x86
assembly follows.

16/70


https://twitter.com/twibsen
http://ibsensoftware.com/products_aPLib.html
https://github.com/emmanuel-marty/apultra
https://github.com/emmanuel-marty
https://github.com/emmanuel-marty/apultra/tree/master/asm/x86

apl_decompress:
_apl_decompress:
pushad

%ifdef CDECL

mov esi, [esp+32+4] ; esi = aPLib compressed data
mov edi, [esp+32+8] ; edi = output

%endif

; === register map ===

; al: bit queue

; ah: unused, but value is trashed

; ebx: follows_literal

; ecx: scratch register for reading gamma2 codes and storing copy length
; edx: match offset (and rep-offset)

; esi: input (compressed data) pointer

; edi: output (decompressed data) pointer

; ebp: offset of .get_bit

mov al, 0806H ; clear bit queue(al) and set high bit to move into carry
xor edx, edx ; invalidate rep offset in edx
call .init_get_bit
.get_dibits:
call ebp ; read data bit
adc ecx, ecx ; shift into cx
.get_bit:
add al,al ; shift bit queue, and high bit into carry
jnz .got_bit ; queue not empty, bits remain
lodsb ; read 8 new bits
adc al,al ; shift bit queue, and high bit into carry
.got_bit:
ret
.init_get_bit:
pop ebp ; load offset of .get_bit, to be used with call ebp
add ebp, .get_bit - .get_dibits
.literal:
movsb ; read and write literal byte
.next_command_after_literal:
push O3H
pop ebx ; set follows_literal(bx) to 3

.next_command:
call ebp ; read 'literal or match' bit
jnc .literal ; if 0: literal

; 1x: match

call ebp ; read '8+n bits or other type' bit
jc .other ; 11x: other type of match
; 10: 8+n bits match
call .get_gamma2 ; read gamma2-coded high offset bits
sub ecx, ebx ; high offset bits == 2 when follows_literal == 3 ?

; (a gamma2 value is always >= 2, so substracting
follows_literal when it
; 1s == 2 will never result in a negative value)

17/70



jae .not_repmatch ; 1f not, not a rep-match
call .get_gamma2 ; read match length
jmp .got_len ; go copy
.not_repmatch:
mov edx, ecx ; transfer high offset bits to dh
shl edx, 8
mov dl, [esi] ; read low offset byte in dl
inc esi
call .get_gamma2 ; read match length
cmp edx, 7DOGH ; offset >= 32000 ?
jae .increase_len_by2 ; if so, increase match len by 2
cmp edx, 0500H ; offset >= 1280 ?
jae .increase_len_byl ; if so, increase match len by 1
cmp edx, O080H ; offset < 128 ?
jae .got_len ; 1f so, increase match len by 2, otherwise it would be a
7+1 copy
.increase_len_by2:
inc ecx ; increase length
.increase_len_by1:
inc ecx ; increase length
; copy ecx bytes from match offset edx
.got_len:
push esi ; save esi (current pointer to compressed data)
mov esi,edi ; point to destination in edi - offset in edx
sub esi, edx
rep movsb ; copy matched bytes
pop esi ; restore esi
mov bl,02H ; set follows_literal to 2 (ebx is unmodified by match
commands)
jmp .next_command
; read gamma2-coded value into ecx
.get_gamma2:
xor ecx, ecx ; initialize to 1 so that value will start at 2
inc ecx ; when shifted left in the adc below
.gamma2_loop:
call .get_dibits ; read data bit, shift into cx, read continuation bit
jc .gamma2_loop ; loop until a zero continuation bit is read
ret
; handle 7 bits offset + 1 bit len or 4 bits offset / 1 byte copy
.other:
xor ecx, ecx
call ebp ; read '7+1 match or short literal' bit
jc .short_literal ; 111: 4 bit offset for 1-byte copy

; 110: 7 bits offset + 1 bit length

movzx edx, byte[esi] ; read offset + length in dl

inc esi
inc ecx ; prepare cx for length below
shr dl,1 ; shift len bit into carry, and offset in place
je .done ; 1f zero offset: EOD
adc ecx, ecx ; len in cx: 1*2 + carry bit = 2 or 3
jmp .got_len
; 4 bits offset / 1 byte copy
.short_literal:
call .get_dibits ; read 2 offset bits

18/70



adc ecx, ecx

call .get_dibits ; read 2 offset bits
adc ecx, ecx
xchg eax, ecx ; preserve bit queue in cx, put offset in ax
jz .write_zero ; if offset is 0, write a zero byte
; short offset 1-15
mov ebx, edi ; point to destination in es:di - offset in ax
sub ebx, eax ; we trash bx, it will be reset to 3 when we loop
mov al, [ebx] ; read byte from short offset
.write_zero:
stosb ; copy matched byte
xchg eax, ecx ; restore bit queue in al
jmp .next_command_after_literal
.done:
sub edi, [esp+32+8] ; compute decompressed size
mov [esp+28], edi
popad
ret

9. MOS Technology 6502

This 8-Bit CPU was the product of Motorola management, ignoring customer concerns about
the cost of the 6800 CPU launched by the company in 1974. Following consultations with
potential customers for the 6800. Chuck Peddle tried to convince Motorola to develop a low-
cost alternative for consumers on a limited budget.

Motorola ordered Peddle to cease working on this idea, which resulted in his departure from
the company with several other employees that began working on the 6502 at MOS
Technology. Used in the Commodore 64, the Apple II, and the BBC Micro home computers,
including various gaming consoles, Motorola acknowledged missing a golden opportunity.
The company would later express regret for dismissing Peddle’s idea since the 6502 was far
more successful than the 6800.

Trivia: The Terminator movie from 1984 uses CPU instructions from the 6502.

Those of you that want to program a Commodore 64 without purchasing one can always use
an emulator like VICE. For the Apple II, there’s AppleWin. (Yes, Windows only). Since
Qkumba already implemented several popular depackers for 6502, I requested a translation
of the Exomizer compression algorithm. Using this translation, I created the following table,
which lists 6502 instructions and their equivalent for x86. The EBX and ECX registers
replace the X and Y registers, respectively. Using #$80 as an immediate value is simply for
demonstration, and you’ll find a full list of instructions here.

6502 x86 Description

Ida #$80 mov al, 0x80  Load byte into accumulator.

19/70


http://www.6502.org/
http://www.cpushack.com/2016/08/19/cpu-of-the-day-motorola-mc6801-the-second-first-6800-mcu/
https://www.team6502.org/chuck-peddle.html
https://www.commodore.ca/commodore-history/the-rise-of-mos-technology-the-6502/
http://oldcomputers.net/c64-info.html
http://oldcomputers.net/appleii.html
http://oldcomputers.net/bbc-micro.html
http://www.cpu-world.com/CPUs/650x/index.html
https://www.imdb.com/title/tt0088247/
https://www.pagetable.com/?p=64
https://vice-emu.sourceforge.io/
https://github.com/applewin/applewin
https://twitter.com/a2_qkumba
http://pferrie.epizy.com/misc/appleii.htm
https://bitbucket.org/magli143/exomizer/wiki/Home
http://www.6502.org/tutorials/6502opcodes.html

sta mov Store accumulator in memory.

[address] [address], al

cmp cmp al, 0x80  Compare byte with accumulator.

#$80

cpx #$80 cmp bl, 0x80  Compare byte with X.

cpy #$80 cmp cl, 0x80  Compare byte with Y.

asl shl al, 1 ASL shifts all bits left one position. 0 is shifted into bit 0 and
the original bit 7 is shifted into the Carry.

Isr shr al, 1 Logical shift right.

bit #$7 testal, 7 Perform a bitwise AND, set the flags and discard the result.

sec stc SEt the Carry flag.

adc #$80 adc al, 0x80 Add byte with Carry.

sbc #$1  sbb al, 1 Subtract byte with Carry.

rts ret Return from subroutine.

jsr call Save next address and jump to subroutine.

eor #380 xor al, 0x80 Perform an exclusive OR.

ora #$80 or al, 0x80 Perform a bitwise OR.

and and al, 0x80 Bitwise AND with accumulator

#$80

rol rcl al, 1 Shifts all bits left one position. The Carry is shifted into bit 0
and the original bit 7 is shifted into the Carry.

ror rcr al, 1 Shifts all bits right one position. The Carry is shifted into bit 7
and the original bit 0 is shifted into the Carry.

bpl jns Branch on PLus. Jump if Not Signed.

bmi js Branch on Minus. Jump if Signed.

bcc:bcs  jnc:jc Branch on Carry Clear. Branch on Carry Set.

bne:beq jneije Branch on Not Equal. Branch on EQual.

bvc:bvs  jno:jo Branch on oVerflow Clear. Branch on oVerflow Set.

php pushf PusH Processor status.

20/70



plp popf PuLl Processor status.
pha push eax PusH Accumulator.
pla pop eax PuLl Accumulator.
tax movzx ebx, al  Transfer A to X.

/ mov bl, al
tay movzx ecx, al Transfer Ato Y.

/ mov cl, al
txa mov al, bl Transfer X to A.
tya mov al, cl Transfer Y to A.
inx inc ebx /inc INcrement X.

bl
iny incecx/inccl INcrementY.
dex Slec ebx/dec DEcrement X.
dey dec ecx/dec DEcrementY.

cl

9.1 Exomizer

Designed by Magnus Lind and published in 2002. Exomizer is popular for devices such as
the Commodore VIC20, the C64, the C16/plus4, the C128, the PET 4032, the Atari 400/800
XL/XE, the Apple I1+e, the Oric-1, the Oric Atmos, and the BBC Micro B. It inspired the
development of other executable compressors, most notably PackFire. Qkumba was kind
enough to provide a translation of the Exomizer 3 decoder translated from 6502 to x86.
However, due to the complexity of the source code, only a snippet of code is shown here. The
Y register maps to the EDI register while the X register maps to the ESI register.

21/70


https://bitbucket.org/magli143/exomizer/wiki/Home
https://www.old-computers.com/museum/computer.asp?c=252
https://www.old-computers.com/museum/computer.asp?c=98
https://www.old-computers.com/museum/forum.asp?c=97&st=1
https://www.old-computers.com/museum/computer.asp?st=1&c=96
https://www.old-computers.com/museum/computer.asp?st=1&c=103
http://oldcomputers.net/atari800.html
http://oldcomputers.net/appleii.html
https://www.old-computers.com/museum/computer.asp?c=180
https://www.old-computers.com/museum/computer.asp?c=79
http://oldcomputers.net/bbc-micro.html
http://pferrie.epizy.com/?i=1

%MACRO mac_get_bits 0
call get_bits

%ENDM
get_bits:
adc al, 0x80
\Y%
pushfd
shl al, 1
lahf
jns gb_skip
gh_next:
shl byte [zp_bitbuf], 1
jne gb_ok
mac_refill bits
gb_ok:
rcl al, 1
lahf
test al, al
js gb_next
gb_skip:
popfd
sahf
jo gb_get_hi
ret
gb_get_hi:
stc
mov [zp_bits_hi], al
jmp get_crunched_byte

%ENDIF

;jsr get_bits

;adc #$80 ; needs c=0,

;bpl gb_skip
;asl zp_bitbuf
;bne gb_ok

;+mac_refill_bits

;rol

;bmi gb_next

;bvs gb_get_hi

;sta zp_bits_hi
;jmp get_crunched_byte

4

; calculate tables (62 bytes) + get_bits macro
; X and y must be #0 when entering

clc
table_gen:

movzx esi, al

mov
and
mov

sequence

eax, edi
al, oxof
[edi + tabl_lo], al
shortcut

;clc

;and #$0f
;sta tabl_lo,y
;beq shortcut ; start a new

4

mov

mov

eax, esi

al, [edi + tabl_lo - 1]
[edi + tabl_lo], al

al, [zp_len_hi]

al, [edi + tabl_hi - 1]

[edi + tabl_hi], al
al, 0x01

[zp_len_hi], al
al, 0x78

mac_get_bits

;adc tabl_lo - 1,y
;sta tabl_lo,y
;lda zp_len_hi
;adc tabl hi - 1,y

;sta tabl_hi,y

;lda #$01

;sta <zp_len_hi

;lda #$78 ; %01111000
;+mac_get_bits

affects

22/70



shr al, 1 ;1sr

movzx esi, al ; tax
je rolled ;beq rolled
pushfd ;php
rolle:
shl byte [zp_len_hi],1 ;asl zp_len_hi
stc ;sec
rcr al, 1 ;ror
dec esi ;dex
jne rolle ;bne rolle
popfd yplp
rolled:
rcr al, 1 ,ror
mov [edi + tabl_bi], al ;sta tabl_bi,y
test al, al
js no_fixup_lohi ;bmi no_fixup_lohi
mov al, [zp_len_hi] ;lda zp_len_hi
mov ebx, esi
mov [zp_len_hi], bl ;stx zp_len_hi
jmp  skip_fix ; IBYTE $24
no_fixup_lohi:
mov eax, esi ;txa
skip_fix
inc edi ;iny
cmp edi, encoded_entries ;cpy #encoded_entries
jne table_gen ;bne table_gen

9.2 Pucrunch

Designed by Pasi Ojala and published in 1997. It’s described by the author as a Hybrid LZ77
and RLE compressor, using Elias gamma coding for reference length, and a mixture of
gamma and linear code for the offset. It requires no additional memory for decompression.
The description and source code are well worth a read for those of you that want to
understand the characteristics of other LZ77-style compressors.

10. Zilog 80

I was able to design whatever I wanted. And personally I wanted to develop the best and
the most wonderful 8-Bit microprocessor in the world. — Masatoshi Shima

After helping to design microprocessors at Intel (4-Bit 4004, the 8-Bit 8008 and 8080),
Ralph Ungermann and Federico Faggin left Intel in 1974 to form Zilog. Masatoshi Shima,
who also worked at Intel, would later join the company in 1975 to work on an 8-Bit CPU
released in 1976 they called the Z80. The Z80 is essentially a clone of the Intel 8080 with
support for more instructions, more registers, and 16-Bit capabilities. Many of the Z80
instructions, to the best of my knowledge, do not have an equivalent on the x86. Proceed with
caution, as with no prior experience writing for the Z80, some of the mappings presented
here may be incorrect.

23/70


http://a1bert.kapsi.fi/
http://a1bert.kapsi.fi/Dev/pucrunch/
https://computerhistory.org/profile/masatoshi-shima/
https://www.ithistory.org/honor-roll/mr-ralph-ungermann
https://computerhistory.org/profile/federico-faggin/
http://www.z80.info/

Z80 x86 Z80 Description

bit test Perform a bitwise AND, set state flags and discard result.

ccf cmc Inverts/Complements the carry flag.

cp cmp Performs subtraction from A. Sets flags and discards result.

djnz  loop Decreases B and jumps to a label if Not Zero. If mapping BC to CX,
LOOP works or REP depending on operation.

ex xchg Exchanges two 16-bit values.

exx EXX exchanges BC, DE, and HL with shadow registers with BC’, DE’,
and HL’. Unfortunately, nothing like this available for x86. Try to use
spare registers or rewrite algorithm to avoid using EXX.

ip jcc Conditional or unconditional jump to absolute address.

jr jcc Conditional or unconditional jump to relative address not exceeding 128-
bytes ahead or behind.

Id mov Load/Copy immediate value or register to another register.

i movsb Performs a “LD (DE),(HL)”, then increments DE and HL. Map Sl to HL, DI
to DE and you can perform the same operation quite easily on x86.

Idir rep Repeats LDI (LD (DE),(HL), then increments DE, HL, and decrements

movsb BC) until BC=0. Note that if BC=0 before this instruction is called, it will

loop around until BC=0 again.

res btr Reset bit. BTR doesn’t behave exactly the same, but it's close enough.
An alternative might be masking with AND.

ri/rla rclor  The register is shifted left and the carry flag is put into bit zero of the

/rlc/ adc register. The 7th bit is put into the carry flag. You can perform the same

rlca operation using ADC (Add with Carry).

rid Performs a 4-bit leftward rotation of the 12-bit number whose 4 most
signigifcant bits are the 4 least significant bits of A, and its 8 least
significant bits are in (HL).

re/ rcr 9-bit rotation to the right. The carry is copied into bit 7, and the bit leaving

rral/r on the right is copied into the carry.

rra Performs a RR A faster, and modifies the flags differently.

sbc sbb Sum of second operand and carry flag is subtracted from the first
operand. Results are written into the first operand.

sla sal

24/70



sli/sl1  shl An “‘undocumented” instruction. Functions like sla, except a 1 is inserted
into the low bit.
sra sar Arithmetic shift right 1 bit, bit 0 goes to carry flag, bit 7 remains
unchanged.
srl shr Like SRA, except a 0 is put into bit 7. The bits are all shifted right, with bit
0 put into the carry flag.
10.1 Mega LZ

Designed by the demo group MAYhEM and published in 2005. The original Z80 decoder by
fyrex was optimized by Introspec in 2017 while researching 8-Bit compression algorithms.
The x86 assembly based on that uses the following register mapping.

Register Mapping

Z80 x86
A AL

B EBX
C ECX
D DH
E DL
HL ESI
DE EDI

The EBX and ECX registers are to replace the B and C registers, respectively, to save a few
bytes required for incrementing and decrementing 8-bit registers on x86.

25/70


http://www.pouet.net/groups.php?which=2223
http://os4depot.net/index.php?function=showfile&file=development/cross/megalz.lha
http://www.pouet.net/user.php?who=4414
https://github.com/specke
http://hype.retroscene.org/blog/dev/740.html

megalz_depack:
_megalz_depack:

pushad
mov esi, [esp+32+12]
mov edi, [esp+32+ 4]

call init_get_bit

add al, al
jnz exit_get_bit

lodsb

adc al, al
exit_get_bit:

ret
init_get_bit:

pop ebp

mov al, 128
mlz_literal:

movsb
mlz_main:

call ebp

jc mlz_literal

xor edx, edx

mov dh, -1

xor ebx, ebx

push 2

pop ecx

call ebp

jc CASEQ1x

call ebp

jc mlz_short_ofs
CASEO00:

dec ecx

mov dl, 63
ReadThreeBits:

call ebp

adc dl, dl

jnc ReadThreeBits

mlz_copy_bytes:
push esi
movsx edx, dx

lea esi, [edi+edx]

rep movsb

pop esi

jmp mlz_main
CASEQ1x:

call ebp

jnc CASEQ10

dec ecx
ReadLoglLength:

call ebp

inc ebx

jnc ReadLogLength

;oesi
; edi = outbuf

inbuf

; add a, a

ret nz

; 1d a, (hl)
; inc hl

rla

ret

: 1d a, 128
: 1di

; GET_BIT
; jr c, mlz_literal

. 1d d, #FF
. 1d bc, 2

; GET_BIT

; jr c, CASEO01x

; GET_BIT

; jr ¢, mlz_short_ofs

; dec c
; 1d e, %00111111

; GET_BIT

rl e

; jr nc, ReadThreeBits

push hl

sign-extend dx to 32-bits

; ldir

pop hl

; jr mlz_main

; GET_BIT
; jr nc, CASE010
; dec c

; GET_BIT
; inc b
; jr nc, ReadLogLength

26/70



mlz_read_len:

mlz_copy_bytes

cl
exit

read_len

short_ofs

31

dh
long_ofs

[esi]

[esp+32+4]

[esp+28], edi

call ebp
adc cl,
jc mlz_
dec ebx
jnz mlz_
inc ecx
CASEQ10:
inc ecx
call ebp
jnc mlz_
mov dh,
mlz_long_ofs:
call ebp
adc dh,
jnc mlz_
dec edx
mlz_short_ofs:
mov dl,
inc esi
jmp
mlz_exit:
sub edi,
mov
popad
ret
10.2 ZX7

; GET_BIT

rl c

; jr c, mlz_exit
; djnz mlz_read_len

; inc c

; inc ¢

; GET_BIT

; jr nc, mlz_short_ofs
; 1d d, %00011111

; GET_BIT

; rl d

; jr nc, mlz_long_ofs
; dec d

. 1d e, (hl)

; inc hl
; jr mlz_copy_bytes

; eax = decompressed length

Designed by Einar Saukas and published in 2012. ZX7 is an optimal LZ77 algorithm for the
ZX-Spectrum using a combination of fixed length and variable length Gamma codes for the
match length and offset. The following is a translation of the standard Z80 depacker to a 32-
bit x86 assembly in 111 bytes.

Register Mapping

Z80 x86
A AL
B CH
C CL
BC CX
D DH
E DL
HL ESI

27/70


http://www.worldofspectrum.org/infoseekid.cgi?id=0027996

DE EDXorEDI

28/70



dzx7_standard:
_dzx7_standard:
pushad

; tested on Windows

mov esi, [esp+32+12] ; hl = source

mov edi, [esp+32+ 4] ; de = destination

mov al, 0x80 ; 1d a, $80
dzx7s_copy_byte_loop:

; copy literal byte

movsb ; 1di
dzx7s_main_loop:

call dzx7s_next_bit ; call dzx7s_next_bit

; next bit indicates either literal or sequence

jnc dzx7s_copy_byte_loop ; jr

nc, dzx7s_copy_byte_loop

; determine number of bits used for length (Elias gamma coding)

push edi ; push

mov ecx, O ; 1d

mov dh, ch ; 1d
dzx7s_len_size_loop:

inc dh ; inc

call dzx7s_next_bit ; call

jnc dzx7s_len_size_loop ; jr

; determine length
dzx7s_len_value_loop:

jc skip_call

call dzx7s_next_bit ; call
skip_call:

rcl cl, 1 ;orl

rcl ch, 1 ;orl

; check end marker

jc dzx7s_exit ;ogr

dec dh ; dec

jnz dzx7s_len_value_loop ; jr

; adjust length

inc cX ; inc

; determine offset

de
bc, 0
d, b

d

dzx7s_next_bit
nc, dzx7s_len_size_loop

nc, dzx7s_next_bit

O

c, dzx7s_exit
d
nz, dzx7s_len_value_loop

bc

; load offset flag (1 bit) + offset value (7 bits)

mov dl, [esi] ; 1d

inc esi ; inc

; opcode for undocumented instruction

shl dl, 1 ; defb

; if offset flag is set, load 4 extra

jnc dzx7s_offset_end ;oJr

; bit marker to load 4 bits

mov dh, 0x10 ; 1d
dzx7s_rld_next_bit:

call dzx7s_next_bit ; call

; insert next bit into D

rcl dh, 1 ;orl

; repeat 4 times, until bit marker is
jnc dzx7s_rld_next_bit ;oJr

e, (hl)

hl

"SLL E" aka "SLS E"
$cb, $33

bits

nc, dzx7s_offset_end

d, $10
dzx7s_next_bit
d

out
nc, dzx7s_rld_next_bit

29/70



; add 128 to DE

inc dh ; inc d
; retrieve fourth bit from D
shr dh, 1 ; srl d

dzx7s_offset_end:
; insert fourth bit into E
rcr dl, 1 ;rr e

; Copy previous sequence
; store source, restore destination

xchg esi, [esp] 7 ex (sp), hl
; store destination
push esi ; push hl
; HL = destination - offset - 1
sbb esi, edx ; sbc hl, de
; DE = destination
pop edi ; pop de
rep movsb ; ldir
dzx7s_exit:
pop esi ; pop hl
jnc dzx7s_main_loop ;ogr nc, dzx7s_main_loop
sub edi, [esp+32+4]
mov [esp+28], edi
popad
ret

dzx7s_next_bit:
; check next bit

add al, al ; add a, a

; no more bits left?

jnz exit_get_bit ; ret nz

; load another group of 8 bit

mov al, [esi] ; 1d a, (hl)

inc esi ; inc hl

rcl al, 1 ; rla
exit_get_bit:

ret ; ret

The following is a 32-Bit version of a size-optimized 16-bit code implemented by Trixter and
Qkumba in 2016. It’s currently 81 bytes.

30/70


https://www.dropbox.com/sh/mwa5geyxgl9m24k/AACtCCyO5W1_3-1bI8YxPHLca
https://twitter.com/MobyGamer
http://pferrie.epizy.com/?i=1

zx7_depack:

_zX7_depack:

pushad
mov
mov

call
add
jnz
lodsb
adc

edi, [esp+32+ 4]
esi, [esp+32+12]

init_get_bit
al, al
exit_get_bit

al, al

exit_get_bit:

ret

init_get_bit:

pop
mov
xor
copy_byte:
movsh
main_loop:
call
jnc

; determine number of bits

ebp
al, 86h
ecx, ecx

ebp
copy_byte

xor ebx, ebx
len_size_loop:

inc ebx

call ebp

jnc len_size_loop

jmp len_value_skip

; determine length
len_value_loop:

call ebp
len_value_skip:

adc CX, CX

jc zX7_exit

dec ebx

jnz len_value_loop

inc ecx

mov bl, [esi]

inc esi

stc

adc bl, bl

jnc offset_end

mov bh, 16h
rld_next_bit:

call ebp

adc bh, bh

jnc rld_next_bit

; output
; input

; check next bit
; no more bits left?
; load another group of 8 bits

; copy literal byte

; next bit indicates either
; literal or sequence
used for length (Elias gamma coding)

; check end marker

; adjust length

; determine offset

; load offset flag (1 bit) +
; offset value (7 bits)

; 1f offset flag is set, load
; 4 extra bits

bit marker to load 4 bits

; insert next bit into D

repeat 4 times, until bit

; marker is out

31/70



inc

bh

offset_end:

ZX7_

shr
push
mov
sbb
rep
pop
jmp
exit:
sub
mov
popad
ret

ebx, 1
esi

esi, edi
esi, ebx
movsb

esi
main_loop

edi, [esp+32+4]
[esp+28], edi

10.3 ZX7 Mini

; add 256 to DE

; insert fourth bit into E

; destination = destination - offset - 1

; restore source address

Designed by Antonio Villena and published in 2019. This version uses less code at the
expense of the compression ratio. Nevertheless, it’s a great example to demonstrate the
conversion between Z80 and x86.

Register Mapping

Z80 x86
A AL
BC ECX
D DH
E DL
HL ESI
DE EDI

32/70


https://twitter.com/antoniovil
https://github.com/antoniovillena/zx7mini

zx7_depack:

_zX7_depack:

pushad

mov
mov

call
getbit:
add
jnz
lodsb

adc

esi, [esp+32+4]
edi, [esp+32+8]

init_getbit

al, al

exit_getbit

al, al

exit_getbit:

ret

init_getbit:

pop
mov
copyby:
movsb
mainlo:
call
jnc
push
pop
lenval:
call
rcl
jc
call
jnc
push
movzx
mov
sbb
rep
pop
inc
jmp

ebp
al, 80h

ebp
copyby
1

ecXx

ebp
cl, 1

exit_depack

ebp
lenval
esi

edx, byte[esi]

esi, edi
esi, edx
movsb
esi

esi
mainlo

exit_depack:

sub
mov
popad
ret

10.4 LZF

edi, [esp+32+8]
[esp+28], edi

4

esi =

edi

add
ret
1d

inc
adc

1d
1di

call
jr
1d

call
rl
ret
call
jr
push
1d

sbc
1dir
pop
inc
jr

out

a, (hl)

a, $80

getbit
nc, copyby
bc, 1

getbit

c

c

getbit

nc, lenval
hl

1, (hl)

hl, de
hl

hl
mainlo

Designed by Ilya Muravyov and published here in 2013. The x86 assembly is a translation of
a size-optimized version by introspec. The compressor is closed, so this is another example to

demonstrate the conversion between Z80 and x86.

33/70


https://github.com/encode84
https://encode.su/threads/1819-LZF-Optimized-LZF-compressor
https://encode.su/threads/1819-LZF-Optimized-LZF-compressor?p=58323&viewfull=1#post58323
http://www.pouet.net/user.php?who=95769

1zf_depack:

_1zf_depack:
pushad
mov edi, [esp+32+4]
mov esi, [esp+32+8]
xor ecx, ecx
jmp MainLoop
be zero
ProcessMatches:
push eax
lodsb

rol al, 3

inc al

and al, 00000111b
jnz CopyingMatch

LongMatch:

lodsb

add al, 8
read

adc ch, ch
CopyingMatch:

mov cl, al

inc ecx

pop eax

cmp al, 206h
(#20, #00)

jnz NotTheEnd

xor al, al

cmp [esi], al

jz exit
NotTheEnd:

and al, 1fh
for SBC below
push esi
movzx edx, byte[esi]
mov dh, al
movsx edx, dx

mov esi, edi
sbb esi, edx
rep movsh
pop esi
inc esi
MainLoop:
mov al, [esi]
cmp al, 26h
jnc ProcessMatches

; ex de,hl ; DE

; edi = outbuf
;oesi

inbuf

; 1d b,0
; jr MainLoop ; all copying is done by LDIR; B needs to

;oexa
; 1d a, (hl)
; inc hl

rlca
rlca
rlca

; inc a
; and %00000111
; jr nz,CopyingMatch

; 1d a, (hl)
; add 8
; inc hl ; len == 9 means an extra len byte needs to be

; jr nc,CopyingMatch
; inc b

; 1d c,a
; inc bc
; exa

token == #20 suggests a possibility of the end marker

; jr nz,NotTheEnd
; XOor a
; cp (hl)

ret z ; 1s it the end marker? return if it is

; and %00011111 ; A' = high(offset); also, reset flag C

push hl

. 1d 1, (hl)
. 1d h,a ;HL

offset

push de

offset, HL = dest
dest-offset

sbc hl, de ; HL
pop de

; ldir

pop hl

; inc hl

; 1d a, (hl)
; cp #20
; jr nc,ProcessMatches ; tokens "00011111" mean "copy



1111141 literals"

inc al ; inc a
mov cl, al ; 1d c,a
inc esi ; inc hl
rep movsh ; ldir ; actual copying of the literals
jmp MainLoop ; jr MainLoop
exit:
sub edi, [esp+32+4]
mov [esp+28], edi
popad
ret

11. Motorola 68000 (68K)

“Motorola, with its superior technology, lost the single most important design contest of the
last 50 years” Walden C. Rhines

A revolutionary CPU released in 1979 that includes eight 32-Bit general-purpose data
registers (Do-D7), and eight address registers (Ao-A7) used for function arguments and stack
pointer. The 68K was used in the Commodore Amiga, the Atari ST, the Macintosh, including
various fourth-generation gaming consoles like the Sega Megadrive, and arcade systems like
Namco System 2. The 68K was more compelling than the Z80, 6502, 8088, and 8086, so
why did it lose to Intel in the home computer war of the 1980s? A history of the Amiga, part
10: The downfall of Commodore offers some plausible answers. IBM choosing Control
Program/Monitor by Gary Kildall for its 1980 PC operating system is also likely a factor.

The following table lists some 68K instructions and the x86 instructions used to replace
them.

68K x86 Description

move mov Copy data from source to destination
add add Add binary.

addx adc Add with borrow/carry.

sub sub Subtract binary.

subx sbb Subtract with borrow/carry.

rts ret Return from subroutine.

dbf/dbt  loopne/loope Test condition, decrement, and branch.

bsr call Branch to subroutine

bcs:bcc  jcijnc Branch/Jump if carry set. Jump if carry clear.

35/70


https://en.wikipedia.org/wiki/Wally_Rhines
http://oldcomputers.net/amiga1000.html
http://oldcomputers.net/atari520st.html
http://oldcomputers.net/macintosh.html
http://www.system16.com/hardware.php?id=525
https://arstechnica.com/gaming/2017/01/a-history-of-the-amiga-part-10-the-downfall-of-commodore/

beq:bne je:jne Branch/Jump if equal. Not equal.

ble jle Branch/Jump if less than or equal.
bra jmp Branch always.

Isr shr Logical shift right.

Isl shl Logical shift left.

bhs jae Branch on higher than or same.
bpl jns Branch on higher than or same.
bmi js Branch on minus. Jump if signed.
tst test Test bit zero of a register.

exg xchg Exchange registers.

11.1 PackFire

Designed by neural and published in 2010, PackFire comprises two algorithms tailored for
demos targeting the Atari ST. The first borrows ideas from Exomizer and is suitable for small
files not exceeding ~40KB. The other borrows ideas from LZMA, which is more suited to
compressing larger files. The LZMA-variant requires 16KB of RAM for the range decoder,
which isn’t a problem for the Atari ST with between 512-1024KB of RAM available. However,
translating code written for the 68K to x86 isn’t easy because the x86 is a less advanced
architecture. Since being released, badcode has published decoders for a variety of other
architectures, including 32-Bit ARM. The following is the Exomizer-style decoder for files not
exceeding ~40KB, which probably isn’t very useful unless you write demos for retro
hardware.

36/70


http://neural.untergrund.net/
http://www.pouet.net/prod.php?which=54840
https://www.old-computers.com/museum/computer.asp?c=20
http://jiggawatt.org/badc0de/decrunch/

packfire_depack:
_packfire_depack:

pushad
mov ebp, [esp+32+4] ; eax = inbuf (a0)
mov edi, [esp+32+8] ; edi = outbuf (a1l)
lea esi, [ebp+26] ; lea 26(a0),a2
lodshb ; move.b (a2)+,d7
lit_copy:
movsb ; move.b (a2)+,(al)+
main_loop:
call get_bit ; bsr.b get_bit
jc lit_copy ; bcs.b lit_copy
cdq ; moveq #-1,d3
dec edx
get_index:
inc edx ; addqg.l #1,d3
call get_bit ; bsr.b get_bit
jnc get_index ; bcc.b get_index
cmp edx, 0x10 ;o ocmp.w #$10,d3
je depack_stop ; beq.b depack_stop
call get_pair ; bsr.b get_pair
push edx ; move.w d3,d6 ; save it for the copy
cmp edx, 2 ; cmp.w #2,d3
jle out_of_range ; ble.b out_of_range
cdq ; moveq  #0,d3

out_of_range:
; move.b table_len(pc,d3.w),d1l
; move.b table_dist(pc,d3.w),do
; code without tables

push 4 ; dil =4
pop ecx
push 16 ; do = 16
pop ebx
dec edx ; d3--
js LO
dec edx
mov cl, 2 ; dl =2
mov bl, 48 ; do = 48
js LO
mov cl, 4 ; di = 4
mov bl, 32 ; do = 32
LO:
call get_bits ; bsr.b get_bits
call get_pair ; bsr.b get_pair
pop ecx
push esi
mov esi, edi ; move.l ail,as3

37/70



sub

copy_bytes:

rep

pop
jmp
get_pair:
pushad
cdq

esi, edx

movshb

esi
main_loop

calc_len_dist:

mov
and
jne
push
pop

node:
mov
shr
mov
push
pop
and
je
shr

nibble:
mov
and
shl
add
inc

; dbf
dec
jns
; save
mov
mov
popad
get_bits:
cdq

ebx, edx
ebx, 15
node

1

edi

eax, edx
eax, 1

cl, [ebp+eax]

1

eax

ebx, eax
nibble
ecx, 4

ebx, edi
ecx, 15
eax, cl
edi, eax
edx

d3,calc_len_dist

sub.1

; move.b

subg.w
bne.b

bra.b

sub.1

; moveq

;omove.w
;oand.w

bne.b

; moveq

; move.w
; lsr.w
; move.b
; moveq

and.w

beq.b

; lsr.b

; move.w
; and.w
; 1sl.1
; add.l
; addqg.w

dword[esp+pushad_t.edx]

calc_len_dist

do and di

[esp+pushad_t.ebx],
[esp+pushad_t.ecx],

getting_bits:

dec
jns
add
ret

ecx

cont_get_bit

edx, ebx

depack_stop:

sub
mov
popad
ret

edi, [esp+32+8]
[esp+pushad_t.eax],

cont_get_bit:

call
adc

get_bit
edx, edx

ebx
ecx

; moveq

subqg.b
bhs.b

; add.w

edi

rts

bsr.b

; addx.1

d3, a3

(a3)+, (a1)+

#1,d6
copy_bytes

main_loop
a6, a6
#$T, d2
a6, do
d2,do
node

#1,d5

a6, d4
#1,d4

(a0, d4.w),d1

#1,d4

d4,de
nibble
#4,d1

ds5, do
d2,d1
di,d4
d4,ds
#1,a6

#0,d3

#1,d1

cont_get_bit

do, d3

get_bit
d3,d3

38/70



jmp getting_bits ; bra.b getting_bits

get_bit:
add al, al ; add.b d7,d7
jne byte_done ; bne.b byte_done
lodsb ; move.b (a2)+,d7
adc al, al ; addx.b d7,d7
byte_done:
ret ; rts

11.2 Shrinkler

Designed by Aske Simon Christensen (Blueberry/Loonies) and published in 1999. It stores
compressed data in Big-Endian 32-bit words, and the x86 translation must use BSWAP
before reading bits of the stream. The compressor is open source and could be updated to use
Little-Endian format instead. Christensen is also a co-author of the Crinkler executable
compressor along with Rune Stubbe (Mentor/TBC) that’s popular for 4K intros on Windows.

The following is a description from Blueberry:

Shrinkler is optimized for target sizes around 4k (while still being good for
64k), which strongly favors decompression code size. It tries to achieve the best
size for this target, somewhat at the expense of decompression speed. At the
same time, it is intended to be useful on Amiga 500, which means that
decompression speed should still be reasonable, and decompression memory
usage should be small. Shrinkler decrunches a 64k intro in typically less than
half a minute on Amiga 500, which is an acceptable wait time for starting an
intro. And the memory needed for the probabilities fits within the default stack
size of 4k on Amiga.

Shrinkler also has special tweaks gearing it towards 16-bit oriented data (as all
68000 instructions are a multiple of 16 bits). Specifically, it keeps separate
literal context groups for even and odd bytes, since these distributions are
usually very different for Amiga data. Same thing for the flag indicating whether
the a literal or a match is coming up. This gives a great boost for Amiga intros,
but it has no benetfit for data that has arbitrary alignment. It usually doesn’t
hurt either, except for the slight cost in decompression code size.

The following is a translation of the 68K assembly to x86, with help from Blueberry.

39/70


https://github.com/askeksa
https://github.com/askeksa/Shrinkler
http://www.crinkler.net/
https://twitter.com/stubbesaurus

%define INIT_ONE_PROB 0Xx8000

%define ADJUST_SHIFT 4
%define SINGLE_BIT_CONTEXTS 1
%define NUM_CONTEXTS 1536

struc pushad_t
.edi resd
.esi resd
.ebp resd
.esp resd
.ebx resd
.edx resd
.ecx resd
.eax resd

endstruc

PR R R R R R R

; temporary variables for range decoder
%define d2 4*0
%define d3 4*1
%define d4 4*2
%define prob 4*3

%ifndef BIN
global ShrinklerDecompress
global _ShrinklerDecompress

%endif
ShrinklerDecompress:
_ShrinklerDecompress:
; save d2-d7/a4-a6 in -(a7) the stack
pushad ; movem.l d2-d7/a4-a6,-(a7)

; esi = inbuf

mov esi, [esp+32+4] ; move.l a0,a4d
; edi = outbuf
mov edi, [esp+32+8] ; move.l al,ab

; move.l al, a6
; allocate local memory for range decoder
sub esp, 4096
test [esp], esp ; stack probe
mov ebp, esp ; ebp = stack pointer

; Init range decoder state

mov dword[ebp+d2], @ ; moveq.l #0,d2
mov dword[ebp+d3], 1 ; moveq.l #1,d3
mov dword[ebp+d4], 1 ; moveq.l #1,d4
ror dword[ebp+d4], 1 ; ror.l #1,d4

; Init probabilities

mov edx, NUM_CONTEXTS ; move.l #NUM_CONTEXTS, dé6
.init:

; move.w #INIT_ONE_PROB, -(a7)

mov word[prob+ebp+edx*2-2], INIT_ONE_PROB

sub dx, 1 ; subg.w #1,d6

jne .init ; bne.b .init

40/70



; D6 = 0
it
; Literal
add dl, 1 ;
.getlit:
call GetBit ;
adc dl, dl ;
jnc .getlit ;
mov [edi], dl ;
inc edi
.switch:
; After literal
call GetKind ;
jnc Jdit ;
; Reference
mov edx, -1 ;
call GetBit ;
jnc .readoffset ;
.readlength:
mov edx, 4 ;
call GetNumber ;
.copyloop:
mov al, [edi + ebx] ;
stosb
sub ecx, 1 ;
jne .copyloop ;
; After reference
call GetKind ;
jnc Jdit ;
.readoffset:
mov edx, 3 ;
call GetNumber ;
mov ebx, 2 ;
sub ebx, ecx ;
jne .readlength ;
add esp, 4096 ;
sub edi, [esp+32+8]
mov [esp+pushad_t.eax],
popad ’
ret ;

ReportProgress:

; move.l a2,do

; beq.b .nocallback

; move.l ab5,do

; sub.l a6,do

; move.l a3,a0

; Jsr (a2)
.nocallback:

; rts

addq.b #1,d6
bsr.b GetBit
addx.b d6,d6
bcc.b .getlit
move.b d6, (a5)+

bsr.b ReportProgress

bsr.b GetKind
bcc.b .1lit
moveq.l #-1,d6

bsr.b GetBit
bcc.b .readoffset

moveq.l #4,d6
bsr.b GetNumber

move.b (a5,d5.1),(a5)+

subqg.l #1,d7
bne.b .copyloop
bsr.b ReportProgress

bsr.b GetKind
bcc.b .1lit

moveq.l #3,d6
bsr.b GetNumber
moveq.l #2,d5
sub.1l d7,d5

bne.b .readlength

lea.l NUM_CONTEXTS*2(a7),a7
edi

movem.l (a7)+,d2-d7/a4-a6
rts

41/70



GetKind:

; Use parity as context

4

4

4

mov edx, 1

and edx, edi

shl dx, 8

jmp GetBit
GetNumber:

; EDX = Number context

; Out: Number in ECX

shl dx, 8
.numberloop:

add dl, 2

call GetBit

jc .numberloop

mov ecx, 1

sub dl, 1
.bitsloop:

call GetBit

adc ecx, ecx

sub dl, 2

jnc .bitsloop

ret

; EDX = Bit context

; d2 = Range value

; d3 = Interval size

; d4 = Input bit buffer

; Out: Bit in C and X
readbit:

mov eax, [ebp+d4]

add eax, eax

jne nonewword

lodsd

bswap eax

adc eax, eax
nonewword:

mov [ebp+d4], eax

mov [esp+pushad_t.esi],

adc bx, bx

add CX, CX

jmp check_interval
GetBit:

pushad

mov ebx, [ebp+d2]

mov ecx, [ebp+d3]
check_interval:

test CX, CX

jns readbit

4

move.l a5, d1
moveq.l #1,d6
and.l di,d6
1sl.w #8,d6
bra.b GetBit

1sl.w #8,d6

addq.b #2,d6
bsr.b GetBit

bcs.b .numberloop

moveq.l #1,d7
subqg.b #1,d6

bsr.b GetBit
addx.l d7,d7
subg.b #2,d6
bcc.b .bitsloop
rts

add.l1 d4,d4
bne.b nonewword
move.l (a4)+,d4

data is stored in big-endian format

addx.1l d4,d4

esi
; addx.w d2,d2
; add.w d3,d3
tst.w d3

bpl.b readbit

; lea.l 4+SINGLE_BIT_CONTEXTS*2(a7,d6.1),al

; add. 1l

d6, a1l

42/70



lea edi, [ebp+prob+2*edx+SINGLE_BIT_CONTEXTS*2]
movzx eax, word[edi] ; move.w (al),dl
; D1/EAX = One prob

shr ax, ADJUST_SHIFT ; 1lsr.w #ADJUST_SHIFT,d1

sub [edi], ax ; sub.w di, (a1l)
add ax, [edi] ; add.w (al),d1
mul CcX ; mulu.w d3,d1

; Swap.w di

sub bx, dx ; sub.w di,d2
jb .one ; blo.b .one
.Zero:
; oneprob = oneprob * (1 - adjust) = oneprob - oneprob * adjust
sub cx, dx ; sub.w di,d3

; @ in C and X
; rts
jmp exit_get_bit
.one:
; onebrob =1 - (1 - oneprob) * (1 - adjust) = oneprob - oneprob * adjust +
adjust
; add.w #$FFfF>>ADJUST_SHIFT, (al)
add word[edi], OXFFFF >> ADJUST_SHIFT
mov cx, dx ; move.w di,d3
add bx, dx ; add.w di,d2
; 1 in C and X
exit_get_bit:
mov word[ebp+d2], bx
mov word[ebp+d3], cx
popad
ret ; rts

The following is my own attempt to implement a size-optimized version of the same depacker
in x86 assembly. However, there’s likely room for improvement here, and this code will be
updated later.

43/70



%define
%define

INIT_ONE_PROB
ADJUST_SHIFT

Ox8000
4

%define SINGLE_BIT_CONTEXTS 1

%define

struc p
.edi
.esi
.ebp
.esp
.ebx
.edx
.ecx
.eax

endstru

struc s
.esp
.rang
.ofs
.inte

endstru

bits 32

%ifndef

global shrinkler_depackx

NUM_CONTEXTS

ushad_t
resd
resd
resd
resd
resd
resd
resd
resd
c

PR R R R R R R

hrinkler_ctx
resd 1
e resd 1
resd 1
rval resd 1
c

BIN

4

4

4

1536

original value of esp before allocation
range value

interval size

global _shrinkler_depackx

%endif

shrinkler_d

_shrinkler_

pushad
mov
mov

mov
xor
mov
sub
test

mov
stosd
cdq
xchg
stosd
stosd
inc
stosd

call
GetBit:

pushad

mov

epackx:
depackx:

ebx, [esp+32+4]
esi, [esp+32+8]

eax, esp
ecx, ecx
ch, 16h

esp, ecx
[esp], esp

edi, esp

eax, edx

eax

init_get_bit

edi = outbuf
esi = inbuf
ecx = 4096

subtract 1 page
stack probe

save original value of esp

range value = 0

offset = 0

interval length = 1

ebp, [ebx+shrinkler_ctx.range 1

44/70



mov ecx, [ebx+shrinkler_ctx.interval]

jmp check_interval
readbit:
add al, al
jne nonewword
lodsb
adc al, al
nonewword:
mov [esp+pushad_t.eax], eax
mov [esp+pushad_t.esi], esi

adc ebp, ebp
add ecx, ecx
check_interval:
test CX, CX
jns readbit

lea edi, [shrinkler_ctx_size + ebx + 2*edx + SINGLE_BIT_CONTEXTS*2]
mov ax, word[edi]

shr eax, ADJUST_SHIFT

sub [edi], ax
add ax, [edi]

cdq
mul CcX

sub ebp, edx
jc .one
.Zero:

; oneprob = oneprob * (1 - adjust)

sub ecx, edx
; @ in C and X

jmp exit_getbit

.one:

; onebrob =1 - (1 - oneprob) * (1 - adjust)

adjust

add word[edi],

xchg edx, ecx

add ebp, ecx

; 1 in C and X
exit_gethbit:

mov [ebx+shrinkler_ctx.range
mov [ebx+shrinkler_ctx.interval], ecx

popad
ret
GetKind:
; Use parity as context
mov edx, edi
and edx, 1
shl edx, 8
jmp ebp
GetNumber:
cdq
adc dh, 3
.numberloop:

oneprob - oneprob * adjust

oneprob - oneprob * adjust +

(OXFFFF >> ADJUST_SHIFT)

45/70



inc edx

inc edx

call ebp

jc .numberloop

push 1

pop ecx

dec edx
.bitsloop:

call ebp

adc ecx, ecx

sub dl, 2

jnc .bitsloop

ret

init_get_bit:
pop ebp ; ebp = GetBit

; Init probabilities
mov ch, NUM_CONTEXTS >> 8

xor eax, eax
mov ah, 1<<7
rep stosw

xchg al, ah

mov edi, ebx
mov ebx, esp
; edx = 0
cdq
it
; Literal
inc edx
.getlit:
call ebp
adc dl, dl
jnc .getlit

mov [edi], dl

inc edi
.switch:

; After literal

call GetKind

jnc it

; Reference

cdq

dec edx

call ebp

jnc .readoffset
.readlength:

clc

call GetNumber

push esi

mov esi, edi

add esi, dword[ebx+shrinkler_ctx.ofs]

46/70



rep movsh
pop esi

; After reference
call GetKind

jnc it
.readoffset:
stc
call GetNumber
neg ecx
inc ecx
inc ecx
mov [ebx+shrinkler_ctx.ofs], ecx

jne .readlength

; return depacked length

mov esp, [ebx+shrinkler_ctx.esp]
sub edi, [esp+32+4]

mov [esp+pushad_t.eax], edi
popad

ret

12. C/x86 assembly

The following algorithms were translated from C to x86 assembly or were already
implemented in x86 assembly and optimized for size.

12.1 Lempel-Ziv Ross Williams (LZRW)

Designed by Ross Williams and described in An Extremely Fast Ziv-Lempel Data
Compression Algorithm published in 1991. The compression ratio is only slightly worse than
LZ77 but is much faster at compression.

47/70


http://ross.net/compression/lzrw1.html
https://ieeexplore.ieee.org/document/213344

1zrwl_depack:
_1zrwl_depack:

pushad
lea esi, [esp+32+4]
lodsd
xchg edi, eax ; edi = outbuf
lodsd
xchg ebp, eax ; ebp = inlen
lodsd
xchg esi, eax ; esi = inbuf
add ebp, esi ; ebp = inbuf + inlen
LO:
push 16 + 1 ; bits = 16
pop edx
lodsw ; ctrl = *in++, ctrl |= (*in++) << 8
xchg ebx, eax
L1:
; while(in !'= end) {
cmp esi, ebp
je L4
; if(--bits == 0) goto LO
dec edx
jz LO
L2:
; if(ctrl & 1) {
shr ebx, 1
jc L3
movsb ;o *out++ = *in++;
jmp L1
L3:
lodsb ; ofs = (*in & OxFO) << 4
aam 16
cwde
movzx ecx, al
inc ecx
lodsb ; ofs |= *in++ & OXFF;
push esi ; save pointer to in
mov esi, edi ; ptr = out - ofs;
sub esi, eax
rep movsh ; while(len--) *out++ = *ptr++;
pop esi ; restore pointer to in
jmp L1
L4:
sub edi, [esp+32+4] ; edi = out - outbuf
mov [esp+28], edi ; esp+_eax = edi
popad
ret

12.2 Ultra-fast LZ (ULZ)

Ultra-fast 1.Z was first published by Ilya “encode” Muravyov in 2010 and then appears to
have been open sourced in 2019. The following code is a straightforward translation of the C
decoder to x86 assembly.

48/70


https://github.com/encode84/ulz
https://github.com/encode84
https://encode.su/threads/550-Ultra-fast-LZ

static uint32_t add_mod(uint32_t x, uint8_t** p);

uint32
void
uint
cons

{

_t ulz_depack(

*outbuf,
32_t inlen,
t void *inbuf)

uint8_t “*ptr, *in, *end, *out;
uint32_t dist, len;
uint8_t token;

ou
in
en

wh

}

return (uint32_t)(out - (uint8_t*)outbuf);

t = (uint8_t*)outbuf;
= (uint8_t*)inbuf;

d = in + inlen;

ile(in < end) {

token = *in++;
if(token >= 32) {
len = token >> 5;
if(len == 7)
len = add_mod(len, &in);
while(len--) *out++ = *in++;
if(in >= end) break;
}
len = (token & 15) + 4;
if(len == (15 + 4))
len = add_mod(len, &in);

dist = ((token & 16) << 12) + *(uintl16_t*)in;

in += 2;
ptr = out - dist;
while(len--) *out++ = *ptr++;

static uint32_t add_mod(uint32_t x,
uint8_t c, 1i;

for(i=0; i<=21; i+=7) {

}

C = *(*p)+;
X += (c << 1i);
if(c < 128) break;

return x;

uint8_t** p) {

49/70



ulz_depack:

_ulz_depack:

pushad

lea esi, [esp+32+4]

lodsd

xchg edi, eax ; edi = outbuf

lodsd

xchg ebx, eax

lodsd

xchg esi, eax ; esi = inbuf

add ebx, esi ; ebx += inbuf
ulz_main:

xor ecx, ecx

mul ecx

; while (in < end) {

cmp esi, ebx

jnb ulz_exit

; token = *in++;

lodsb

; if(token >= 32) {
cmp al, 32

jb ulz_copy2
; len = token >> 5
mov cl, al

shr cl, 5

; if(len == 7)

cmp cl, 7

jne ulz_copyl

; len = add_mod(len, &in);
call add_mod

ulz_copy1l:
; while(len--) *out++ = *in++;
rep movsh
; if(in >= end) break;
cmp esi, ebx
jae ulz_exit
ulz_copy2:
; len = (token & 15) + 4;
mov cl, al
and cl, 15
add cl, 4

; if(len == (15 + 4))
cmp cl, 15 + 4
jne ulz_copy3
; len = add_mod(len, &in);
call add_mod
ulz_copy3:
; dist = ((token & 16) << 12) + *(uintl6_t*)in;
and al, 16
shl eax, 12
xchg eax, edx
; eax = *(uinti16_t*)in;
; in += 2;
lodsw
add edx, eax

50/70



; p = out - dist
push esi

mov esi, edi
sub esi, edx
; while(len--) *out++ = *p++;
rep movsb
pop esi
jmp ulz_main
7}
ulz_exit:

; return (uint32_t)(out - (uint8_t*)outbuf);
sub edi, [esp+32+8]

mov [esp+28], edi

popad

ret

; static uint32_t add_mod(uint32_t x, uint8_t** p);

add_mod:
push eax ; save eax
xchg eax, ecx ; eax = len
xor ecx, ecx ;1 =0
am_loop:
mov dl, byte[esi] ;C o= *(*p)++
inc esi
push edx ; save cC
shl edx, cl ; X += (c << 1)
add eax, edx
pop edx ; restore c
cmp dl, 128 ; if(c < 128) break;
jb am_exit
add cl, 7 poi+=7
cmp cl, 21 ; i<=21
jbe am_loop
am_exit:
xchg eax, ecx ; ecx = len
pop eax ; restore eax
ret

12.3 BriefLZ

Designed by Jorgen Ibsen and published in 2015. BriefLZ combines fast encoding and
decoding with a good compression ratio. Ibsen uses 16-Bit tags instead of 8-Bit to improve
performance on 16-bit architectures. It encodes the match reference length and offset using
Elias gamma coding. The following size-optimized decoder in x86 assembly is only 92 bytes.

51/70


https://twitter.com/twibsen
https://github.com/jibsen/brieflz

blz_depack

_blz depac
pushad
lea
lodsd
xchg
lodsd
lea
lodsd
xchg
call

blz_getbit
add
jnz
lodsw
adc

k:
esi,
edi,
ebx,

esi,

blz_

ax,

blz_

ax,

[esp+32+4]
eax
[edi+eax]

eax
init_getbit

ax
exit_getbit

ax

blz_exit_getbit:

ret

blz_init_getbit:

pop
mov

ebp
ax,

blz_literal:

movsb
blz_main:

cmp

jnb

call
jnc

edi,

blz_

ebp

blz_

blz_getgamma:

pushfd
cdq
inc

blz_gamma_

call
adc
call
jc

popfd
cmovc
cme
jnc

; ofs
dec
dec

; len
inc
inc
; ofs
shl

edx
loop:
ebp
edx,
ebp

blz_

ecx,

blz_

8000h

ebx
exit

literal

edx

gamma_loop

edx

getgamma

bs.dst = outbuf

; end = bs.dst + outlen

bs.src = inbuf

tag <<= 1

; continue for all bits

read 16-bit tag

; carry over previous bit

; ebp = blz_getbit

*out++ = *bs.src++

; while(out < end)

; cf = blz_getbit
; if(cf==0) goto blz_literal

save cf
result = 1

; ¢f = blz_getbit()
result = (result << 1) + cf
; ¢f = blz_getbit()
; while(cf == 1)

restore cf

; ecx = cf ? edx : ecx
; complement carry
; loop twice

= blz_getgamma(&bs) - 2;

edx
edx

= blz_getgamma(&bs) + 2;

ecx
ecx

= (ofs << 8) + (uint32_t)*bs.src++ + 1;

edx,

8

52/70



mov dl, [esi]
inc esi
inc edx

; ptr = out - ofs;
push esi

mov esi, edi

sub esi, edx

rep movsh

pop esi

jmp blz_main
blz_exit:

; return (out - (uint8_t*)outbuf);
sub edi, [esp+32+4]

mov [esp+28], edi

popad

ret

12.4 Not Really Vanished (NRV)

Designed by Markus F.X.J. Oberhumer and used in the famous Ultimate Packer for
eXecutables (UPX). NRV uses an LZ77 format with Elias gamma coding for the reference
match offset and length. The following x86 assembly derived from n2b_d_si.asm in the UCL
library is currently 115 bytes.

53/70


https://github.com/markus-oberhumer
https://upx.github.io/
http://www.oberhumer.com/opensource/ucl/

nrv2b_depack:
_nrv2b_depack:

pushad

mov edi, [esp+32+4] ; output
mov esi, [esp+32+8] ; input
xor ecx, ecx

mul ecx

dec edx

mov al, Ox80

call init_get_bit

; read next bit from input
add al, al

jnz exit_get_bit

lodsb

adc al, al
exit_get_bit:

ret
init_get_bit:

pop ebp

jmp nrv2b_main

; copy literal
nrv2b_copy_byte:

movshb
nrv2b_main:
call ebp
jc nrv2b_copy_byte
push 1
pop ebx
nrv2b_match:
call ebp
adc ebx, ebx
call ebp
jnc nrv2b_match
sub ebx, 3
jb nrv2b_offset

shl ebx, 8

mov bl, [esi]
inc esi

Xor ebx, -1

jz nrv2b_exit

xchg edx, ebx
nrv2b_offset:

call ebp
adc ecx, ecx
call ebp
adc ecx, ecx

54/70



jnz nrv2b_copy_bytes

inc ecx
nrv2b_len:
call ebp
adc ecx, ecx
call ebp
jnc nrv2b_len
inc ecx
inc ecx

nrv2b_copy_bytes:
cmp edx, -0xD0OO

adc ecx, 1

push esi

lea esi, [edi + edx]
rep movsb

pop esi

jmp nrv2b_main

nrv2b_exit:
; return depacked length
sub edi, [esp+32+4]
mov [esp+28], edi
popad
ret

12.5 Lempel-Ziv-Markov chain Algorithm (LZMA)

Designed by Igor Pavlov and published in 1998 with the 7zip archiver. It’s an L.Z77 variant
with features similar to LZX used for Microsoft CAB files and compressed help (CHM) files.
LZMA uses an arithmetic coder to store compressed data as a stream of bits resulting in high
compression ratios that inspired the development of Packfire, KKrunchy, and LZOMA, to
name a few. There’s a description by Charles Bloom in De-obfuscating ZMA and by Matt
Mahoney in Data Compression Explained. Alex Ionescu has also published a minimal
implementation with very detailed and helpful comments included in the source. Another
size-optimized version is available from the UPX LZMA SDK. The arithmetic coder for LZMA
usually requires 16KB of RAM and may not be suitable for devices with limited resources.
mudlord’s Win32 executable packer called mupack has an x86 implementation.

Although the compression ratio is excellent, and the speed is acceptable for small files. The
complexity of the decompressor for only a few additional percents more in the compression
ratio didn’t merit an implementation in x86 assembly. I'd be willing to implement it on a
better architecture like ARM64, but not x86. Shrinkler, KKrunchy, and LZOMA all offer
~55% ratios with much smaller RAM and ROM requirements that seem more suitable for
executable compression.

12.6 Lempel-Ziv—Oberhumer-Markov Algorithm (LZOMA)

55/70


https://www.7-zip.org/
http://xavprods.free.fr/lzx/
https://www.youtube.com/watch?v=VYK-xMm11S0
http://cbloomrants.blogspot.com/2010/08/08-20-10-deobfuscating-lzma.html
http://mattmahoney.net/dc/dce.html#Section_523
https://twitter.com/aionescu/
https://github.com/ionescu007/minlzma/
https://github.com/upx/upx-lzma-sdk/blob/master/C/7zip/Compress/LZMA_C/LzmaDecodeSize.c
https://github.com/upx/upx-lzma-sdk
https://twitter.com/opcode_raeg
https://github.com/mudlord/mupack/tree/master/backend/lzma

Designed by Alexandr Efimov and published in 2015. LZOMA is specifically for
decompression of the Linux Kernel but is also suitable for decompression of PE or ELF files
too. It’s primarily based on ideas used by LZMA and LZO. It provides fast decompression like
LZO, and a simplified LZMA format provides a high compression ratio. The trade-off is slow
compression requiring a lot of memory. It’s possible to improve the compression ratio by
using a real entropy encoder, but at the expense of decompression speed. While it’s still only
an experimental algorithm and probably needs more testing, the following is a decoder in C
and handwritten x86 assembly.

56/70


https://github.com/alef78
https://github.com/alef78/lzoma

typedef struct _lzoma_ctx {

uint32_t w;
uint8_t “*src;

} lzoma_ctx;

static uint8_t get_bit(lzoma_ctx *c) {

}

uint32_t cy, Xx;

X = C->W;
C->W <<= 1;

// no bits left?
if(c->w == 0) {
// read 32-bit word
X = *(uint32_t*)c->src;
// advance input
C->src += 4;
// double with carry
c->w = (x << 1) | 1;
}
// return carry bit
return (x >> 31);

void lzoma_depack(

{

void *outbuf,
uint32_t inlen,
const void *inbuf)

uint8_t *out, *ptr, *end;
uint32_t cf, top, total, len, ofs, X,
lzoma_ctx c;

c.w = 1 << 31;
c.src = (uint8_t*)inbuf;
out = (uint8_t*)outhbuf;
end = out + inlen;

// copy first byte
*out++ = *c.src++;
len = 0;
ofs = -1,

while(out < end) {

for(;;) {
// if bit carried, break
if(cf = get_bit(&c)) break;
// copy byte
*out++ = *c.src++;
len = 2;

}

// unpack 1z

if(len) {
cf = get_bit(&c);

}

res;

57/70



// carry?

if(cf) {

len = 3;
total = out - (uint8_t*)outbuf;
top = ((total <= 400000) ? 60 : 50);
ofs = 0;
X = 256;
res = *Cc.src++;
for(;;) {

X += X;

if(x >= (total + top)) {

X -= total;

if(res >= x) {
cf = get_bit(&c);
res = (res << 1) + cf;
res -= x;
}
break;
}
// magic?
if(x & (OXOO2FFEGO << 1)) {
top = (((top << 3) + top) >> 3);
}

if(res < top) break;

ofs -= top;
total += top;
top <<= 1;

cf = get_bit(&c);
res = (res << 1) + cf;
}
ofs += res + 1;
// long length?
if(ofs >= 5400) len++;
// huge length?
if(ofs >= Ox060000) len++;
// negate
ofs =- ofs;

}

if(get_bit(&c)) {
len += 2;
res = 0;
for(;;) {
cf = get_bit(&c);
res = (res << 1) + cf;
if(!get_bit(&c)) break;
res++;
}
len += res;
} else {
cf = get_bit(&c);
len += cf;

}

58/70



ptr = out + ofs;
while(--len) *out++ = *ptr++;
}
}

The assembly code doesn’t transfer that well on to x86. It does, however, avoid having to use
lots of RAM, which is a plus.

59/70



1lzoma_depack:
_lzoma_depack:

pushad ; save all registers
lea esi, [esp+32+4]
lodsd
xchg edi, eax ; edi = outbuf
lodsd
xchg ebp, eax ; ebp = inlen
add ebp, edi ; ebp += out
lodsd
xchg esi, eax ; esi = inbuf
pushad ; save esi, edi and ebp
call init_getbit
get_bit:
add eax, eax ; C->w <<= 1
jnz exit_getbit ; if(c->w == 0)
lodsd ; X = *(uint32_t*)c->src;
adc eax, eax ; C->w = (x << 1) | 1;
exit_getbit:
ret ; return x >> 31;
init_getbit:
pop ebp ; ebp = &get_bit
mov eax, 1 << 31 ; c->w = 1 << 31
cdq ; ofs = -1
movsbh ; fout++ = *src++;
xor ecx, ecx ; len = 0
jmp main_loop
copy_byte:
movsb ; *out++ = *c.src++;
mov cl, 2 ; len = 2
main_loop:
xor ebx, ebx ; res =0

; while(out < end)
cmp edi, [esp+pushad_t._ebp]

jnb lzoma_exit

7 for(;;) {

call ebp ; cf = get_bit(&c);
jnc copy_byte ; if(cf) break;

; unpack 1z

jecxz skip_1lz ; if(len) {

call ebp ; cf = get_bit(&c);
skip_lz: ;Y

; carry?

jnc use_last_offset ; if(cf) {

mov cl, 3+2 ; len = 3

pushad ;

; total = out - (uint8_t*)outbuf
sub edi, [esp+32+pushad_t._edi]
; top = ((total <= 400000) ? 60 : 50;

mov cl, 50
cmp edi, 400000
ja skip_upd

60/70



add cl, 10

skip_upd:
xor ebp, ebp ; ofs = 0
xor edx, edx ; X = 256
inc dh
mov bl, byte[esi] ; res = *c.src++
inc esi
find_loop: ; for(;;) {
add edx, edx ; X += X;
; if(x >= (total + top)) {
push edi ; save total
add edi, ecx ; edi = total + top
cmp edx, edi ; cf = (x - (total + top))
pop edi ; restore total
jb upd_len3 ; jump if x is < (total + top)
sub edx, edi ; X -= total;
cmp ebx, edx ; if(res >= x) {
jb upd_len2 ; jump if res < x

; cf = get_bit(&c);
call dword[esp+pushad_t._ebp]

adc ebx, ebx ; res = (res << 1) + cf;
sub ebx, edx ; res -= x;
jmp upd_len2
upd_len3:
; magic?

; if(x & (OXOO2FFEOO << 1)) {
test edx, (OXOO2FFEOO << 1)
jz upd_len4

; top = (((top << 3) + top) >> 3);

lea ecx, [ecx+ecx*8]
shr ecx, 3
upd_len4:
cmp ebx, ecx ; if(res < top) break;
jb upd_len2
sub ebp, ecx ; ofs -= top
add edi, ecx ; total += top
add ecx, ecx ; top <<= 1

; cf = get_bit(&c);
call dword[esp+pushad_t._ebp]

; res = (res << 1) + cf;

adc ebx, ebx
jmp find_loop
upd_len2:

; ofs = (ofs + res + 1);
lea ebp, [ebp + ebx + 1]

; if(ofs >= 5400) len++;

cmp ebp, 5400
sbb dword[esp+pushad_t._ecx], O

61/70



; if(ofs >= Ox060000) len++;
cmp ebp, Ox060000
sbb dword[esp+pushad_t._ecx], ©

neg ebp ; ofs = -ofs;
mov [esp+pushad_t._edx], ebp ; save ofs in edx
mov [esp+pushad_t._esi], esi
mov [esp+pushad_t._eax], eax
popad ; restore registers
use_last_offset:
call ebp ; if(get_bit(&c)) {
jnc check_two
add ecx, 2 ; len += 2
upd_len: ; for(res=0;;res++) {
call ebp ; cf = get_bit(&c);
adc ebx, ebx ; res = (res << 1) + cf;
call ebp ; if(!get_bit(&c)) break;
jnc upd_lenx
inc ebx ; res++;
jmp upd_1len
upd_lenx:
add ecx, ebx ; len += res
jmp copy_bytes
check_two: ; 3 else {
call ebp ; cf = get_bit();
adc ecx, ebx ; len += cf
copy_bytes: H
push esi ; save c.src pointer
lea esi, [edi + edx] ; ptr = out + ofs
dec ecx
; while(--len) *out++ = *ptr++;
rep movsb
pop esi ; restore c.src
jmp main_loop
lzoma_exit:
popad ; free()
popad ; restore registers
ret

12.7 KKrunchy

Designed by Fabian Giesen for the demo group, Farbrausch, KKrunchy comprises two
algorithms. The first, developed between 2003 and 2005, is an LZ77 variant with an
arithmetic coder published in 2006. The second algorithm developed between 2006 and
2008, borrows ideas from PAQ7 and was published in 2011. Both are slow at compression

but acceptable for demo productions and are compact for decompression. Fabian describes

both in more detail here, including the “secret ingredient” that can improve ratios of 64K

62/70


https://twitter.com/rygorous
http://www.farbrausch.com/
http://www.farbrausch.de/~fg/kkrunchy/
http://mattmahoney.net/dc/paq.html
https://fgiesen.wordpress.com/2011/01/24/x86-code-compression-in-kkrunchy/
http://www.farbrausch.com/~fg/code/disfilter/

intros by up to 10%. In 2011, Farbrausch members published source code for their demo
productions made between 2001-2011, including both compressors. A 32-Bit x86 decoder is
already available from Fabian. There appears to be a buffer overflow in the compressor that
goes unnoticed without address sanitizer. Here’s an alternate version of the simple depacker
used as a reference.

63/70


https://github.com/farbrausch/fr_public
https://github.com/farbrausch/fr_public/blob/master/kkrunchy/depacker_simple.cpp

#ifdef linux

// gcc

#define REV(x) __builtin_bswap32(x)
#else

// msvc

#define REV(x) _byteswap_ulong(x)
#endif

typedef struct _fr_state {
const uint8_t *src;
// range decoder values
uint32_t val, len, pbs[803];
} fr_state;

// decode a bit using range decoder
static int DB(

fr_state *s, int idx, uint32_t flag)
{

uint32_t a, b, c, d, e;

s->pbs[idx];

(s->len >> 11) * a;

(s->val >= b);

= -c; e = c-1;

>len = (d & s->1len) | (e & b);
= (d&a) | (e & -a + 2048);
>>= (5 - flag);

>pbs[idx] += (a A d) + c;

&= b;

>val -= d; s->len -= d;
(s->1len >> 24);
=a==07?-1:0,

(a & OXFF) & *s->src;

d = -a;

s->src += d;

s->val = (s->val << (d << 3)) | b;
s->len = (s->len << (d << 3));
return c;

9 9 v o v v v a0 T

}

// decode tree
static int DT(
fr_state *s, int p, int bits)

{
int c;
for(c=1; c<bits;) {
c = (c+c) + DB(s, p + ¢, bits==256);
}
return ¢ - bits;
}

// decode gamma
static int DG(fr_state *s, int flag) {
int v, X =1;

64/70



uint8_t ¢ = 1;

v = (-flag & (547 - 291)) + 291;

do {
c = (c+c) + DB(s, v+c, 0);
X = (x+x) + DB(s, v+c, 0);
c = (c+tc) + (x & 1);

} while(c & 2);

return x;

}

uint32_t fr_depack(
void *outbuf,
const void *inbuf)
{
int tmp, i, ofs, len, LWM;
uint8_t *ptr, *out = (uint8_t*)outbuf;
fr_state s;

s.src = (const uint8_t*)inbuf;
s.len = ~0;

s.val = REV(*(uint32_t*)s.src);
s.src += 4;

for(i=0; i<803; i++) s.pbs[i] = 1024,

for(;;) {
LWM = 0;
// decode literal
*out++ = DT(&s, 35, 256);
fr_read_bit:
if(!DB(&s, LWM, 0)) continue;
// decode match

len = 0;
// use previous offset?
if(LwM || !'DB(&s, 2, 0)) {

ofs = DG(&s, 0);
if(!ofs) break;

len = 2;

ofs = ((ofs - 2) << 4);

tmp = ((ofs '=0? -1 : 0) & 16) + 3;
ofs += DT(&s, tmp, 16) + 1;

len -= (ofs < 2048);
len -= (ofs < 96);

}

LWwM = 1;

len += DG(&s, 1);

ptr = out - ofs;

while(len--) *out++ = *ptr++;
goto fr_read_bit;

65/70



}

return out - (uint8_t*)outbuf;

13. Results

The following table, while ordered by ratio, is NOT a rank order and shouldn’t be interpreted
that way. It wouldn’t be fair to judge the algorithms based on my criteria, that is: lightweight
decompressor, high compression ratio, open source. The ratios are based on compressing a
1MB PE file for Windows without any additional trickery.

Algorithm RAM (Bytes) ROM (Bytes) Ratio
LZ77 0 54 32%
ZX7 Mini 0 67 36%
LZSS 0 69 40%
LZ4 0 80 43%
ULz 0 124 44%
LZE 0 97 45%
ZX7 0 81 46%
MegalZ 0 117 46%
BriefLZ 0 92 46%
LZSA1 0 96 46%
LZSA2 0 187 50%
NRV2b 0 115 51%
LZOMA 0 238 54%
Shrinkler 4096 235 55%
KKrunchy 3212 639 (compiler generated) 55%
LZMA 16384 1265 (compiler generated) 58%
14. Summary

One could surely write a book about compression algorithms used by the Demoscene. And
it’s safe to say I've only scraped the surface on this subject. For example, there is no analysis
of compression and decompression speed of implementations for the x86 or other

66/70



architectures. My primary concern at the moment is in the compression ratio and code size.

15. Acknowledgements

A number of people helped directly or indirectly with this post.

e Tim Bell for LZB and information about the Stac Electronics lawsuit.

e Blueberry for optimization tips and fixing my initial 68K translation of Shrinkler.
e Qkumba for fixing x86 translation, translation of Exomizer and 6502 depackers.
* Trixter for 8088 depackers.

» Introspec for Z80 depackers and impressive knowledge of LZ variations.

e Emmanuel Marty for aPUltra, LZSA, and helping with x86 decoder for aPLib.

16. Further Research

To save you time locating information about some of the topics discussed in this post, I've
included some links to get you started.

16.1 Documentaries and Interviews

16.2 Websites, Blogs and Forums

16.3 Demoscene Productions

This is not a “best of” list or what my favorites are. It’s mainly from some youtube
recommendations and please don’t take offense If I didn’t include your demo. Contact me if
you feel I've missed any.

16.4 Tools

16.5 Other Compression Algorithms

The following table, while ordered by ratio, is NOT a rank order and shouldn’t be interpreted
that way. It wouldn’t be fair to judge the algorithms based on my criteria, which is a
lightweight decompressor, high compression ratio, open-source. The compression ratios are
from compressing a 1MB PE file for Windows.

OK/Good (~25-39%)

Library / APl /
Algorithm Ratio Link

67/70


https://www.canterbury.ac.nz/engineering/contact-us/people/tim-bell.html
https://github.com/askeksa
https://github.com/peterferrie
https://github.com/mobygamer
https://github.com/specke
https://github.com/emmanuel-marty

zpack 24%  https://github.com/zerkman/zpacker

PPP 27%  https://tools.ietf.org/html/rfc1978

JQCoding 27%  https://encode.su/threads/2157-Looking-for-a-super-
simple-decompressor?p=43099&viewfull=1#post43099

LZJB 28%  https://github.com/nemequ/izjb

LZRW1 31%  http://ross.net/compression/lzrw1.html

LZ48 31%  http://www.cpcwiki.eu/forum/programming/1z48-
cruncherdecruncher/

Lz77 32%  https://github.com/andyherbert/Iz1

LZW 33%  https://github.com/vapier/ncompress

LZP1 34%  http://www.hugi.scene.org/online/coding/hugi%2012%20-
%20colzp.htm

Kitty 34%  https://encode.su/threads/2174-Kitty-file-compressor-
(Super-small-compressor)

LZ49 35%  http://www.cpcwiki.eu/forum/programming/Iz48-
cruncherdecruncher/

LZ4X 36%  https://github.com/encode84/Iz4x

QuickLZ 36%  http://www.quicklz.com/

ZX7Tmini 36%  https://github.com/antoniovillena/zx7mini

RtIDecompressBuffer 36%  Windows OS

(LZNTH1)

Decompress 37%  Windows OS.

(Xpress)

Very Good (40-49%)

Library / API/

Algorithm Ratio Link

LZSS 40%  https://github.com/kieselsteini/lzss

LZF 40%  https://encode.su/threads/1819-LZF-Optimized-LZF-
compressor

LZM 41%  https://github.com/r-lyeh/stdarc.c

68/70


https://github.com/zerkman/zpacker
https://tools.ietf.org/html/rfc1978
https://encode.su/threads/2157-Looking-for-a-super-simple-decompressor?p=43099&viewfull=1#post43099
https://github.com/nemequ/lzjb
http://ross.net/compression/lzrw1.html
http://www.cpcwiki.eu/forum/programming/lz48-cruncherdecruncher/
https://github.com/andyherbert/lz1
https://github.com/vapier/ncompress
http://www.hugi.scene.org/online/coding/hugi%2012%20-%20colzp.htm
https://encode.su/threads/2174-Kitty-file-compressor-(Super-small-compressor)
http://www.cpcwiki.eu/forum/programming/lz48-cruncherdecruncher/
https://github.com/encode84/lz4x
http://www.quicklz.com/
https://github.com/antoniovillena/zx7mini
https://github.com/kieselsteini/lzss
https://encode.su/threads/1819-LZF-Optimized-LZF-compressor
https://github.com/r-lyeh/stdarc.c

RtIDecompressBuffer 43%  Windows OS

(Xpress)

BLZ4 43%  https://github.com/jibsen/blz4

LZ4Ultra 43%  https://github.com/emmanuel-marty/Iz4ultra

ULz 44%  https://github.com/encode84/ulz

BitBuster 44%  https://www.teambomba.net/bombaman/downloadd26a.html

LZE 45%  http://gorry.haun.org/pw/?lze

Decompress (Xpress 45%  Windows OS

Huffman)

ZX7 45%  http://www.worldofspectrum.org/infoseekid.cgi?id=0027996

LZMAT 45%  http://www.matcode.com/lzmat.htm

CRUSH 45%  https://sourceforge.net/projects/crush/

Hrust 46%  https://github.com/specke/ohc

MegalZ 46%  http://os4depot.net/index.php?
function=showfile&file=development/cross/megalz.lha

LZSA1 46%  https://github.com/emmanuel-marty/lzsa

BriefLZ 46%  https://github.com/jibsen/brieflz

apUltra 47%  https://github.com/emmanuel-marty/apultra

Pletter5 47%  http://www.x12s.tk/

Pucrunch 48%  https://github.com/mist64/pucrunch

SR2 48%  http://mattmahoney.net/dc/#sr2

Excellent (50% >)

Library / APl / Algorithm Ratio Link

BCRUSH 50%  https://github.com/jibsen/bcrush

LZSA2 50% https://github.com/emmanuel-marty/lzsa
RtIDecompressBufferEx 50% Windows OS

(Xpress Huffman)

69/70


https://github.com/jibsen/blz4
https://github.com/emmanuel-marty/lz4ultra
https://github.com/encode84/ulz
https://www.teambomba.net/bombaman/downloadd26a.html
http://gorry.haun.org/pw/?lze
http://www.worldofspectrum.org/infoseekid.cgi?id=0027996
http://www.matcode.com/lzmat.htm
https://sourceforge.net/projects/crush/
https://github.com/specke/ohc
http://os4depot.net/index.php?function=showfile&file=development/cross/megalz.lha
https://github.com/emmanuel-marty/lzsa
https://github.com/jibsen/brieflz
https://github.com/emmanuel-marty/apultra
http://www.xl2s.tk/
https://github.com/mist64/pucrunch
http://mattmahoney.net/dc/#sr2
https://github.com/jibsen/bcrush
https://github.com/emmanuel-marty/lzsa

Decompress (MSZip) 51%  Windows OS

Exomizer 51% https://bitbucket.org/magli143/exomizer/wiki/Home
aPLib 51%  http://ibsensoftware.com/products_aPLib.html
JCALG1 52%  https://bitsum.com/portfolio/jcalg1/

NRV2B 52%  http://www.oberhumer.com/opensource/ucl/
BALZ 53%  https://sourceforge.net/projects/balz/
Decompress (LZMS) 54%  Windows OS

LZOMA 54%  https://github.com/alef78/Izoma

KKrunchy 55%  https://github.com/farbrausch/fr_public
Shrinkler 55%  https://github.com/askeksa/Shrinkler

NLZM 55%  https://github.com/nauful/NLZM

BCM 55%  https://github.com/encode84/bcm
D3DDecompressShaders 57%  Windows OS

(DXT/BC)

Packfire 57%  http://neural.untergrund.net/

LZMA 58%  https://www.7-zip.org/sdk.html

PAQS8F 70%  http://mattmahoney.net/dc/pag.html

70/70


https://bitbucket.org/magli143/exomizer/wiki/Home
http://ibsensoftware.com/products_aPLib.html
https://bitsum.com/portfolio/jcalg1/
http://www.oberhumer.com/opensource/ucl/
https://sourceforge.net/projects/balz/
https://github.com/alef78/lzoma
https://github.com/farbrausch/fr_public
https://github.com/askeksa/Shrinkler
https://github.com/nauful/NLZM
https://github.com/encode84/bcm
http://neural.untergrund.net/
https://www.7-zip.org/sdk.html
http://mattmahoney.net/dc/paq.html

