
1/9

Bill Demirkapi November 26, 2021

Abusing Windows’ Implementation of Fork() for
Stealthy Memory Operations

billdemirkapi.me/abusing-windows-implementation-of-fork-for-stealthy-memory-operations/

Bill Demirkapi

Nov 25, 2021 • 9 min read

https://billdemirkapi.me/abusing-windows-implementation-of-fork-for-stealthy-memory-operations/
https://billdemirkapi.me/author/bill/
https://billdemirkapi.me/author/bill/

2/9

Note: Another researcher recently tweeted about the technique discussed in this blog
post, this is addressed in the last section of the blog (warning, spoilers!).

To access information about a running process, developers generally have to open a
handle to the process through the OpenProcess API specifying a combination of 13
different process access rights:

1. PROCESS_ALL_ACCESS - All possible access rights for a process.
2. PROCESS_CREATE_PROCESS - Required to create a process.
3. PROCESS_CREATE_THREAD - Required to create a thread.
4. PROCESS_DUP_HANDLE - Required to duplicate a handle using DuplicateHandle.
5. PROCESS_QUERY_INFORMATION - Required to retrieve general information about a

process such as its token, exit code, and priority class.
6. PROCESS_QUERY_LIMITED_INFORMATION - Required to retrieve certain limited

information about a process.
7. PROCESS_SET_INFORMATION - Required to set certain information about a process

such as its priority.
8. PROCESS_SET_QUOTA - Required to set memory limits using

SetProcessWorkingSetSize.
9. PROCESS_SUSPEND_RESUME - Required to suspend or resume a process.

10. PROCESS_TERMINATE - Required to terminate a process using TerminateProcess.
11. PROCESS_VM_OPERATION - Required to perform an operation on the address space

of a process (VirtualProtectEx, WriteProcessMemory).
12. PROCESS_VM_READ - Required to read memory in a process using

ReadProcessMemory.
13. PROCESS_VM_WRITE - Required to write memory in a process using

WriteProcessMemory.

The access rights requested will impact whether or not a handle to the process is
returned. For example, a normal process running under a standard user can open a
SYSTEM process for querying basic information, but it cannot open that process with a
privileged access right such as PROCESS_VM_READ .

In the real world, the importance of process access rights can be seen in the restrictions
anti-virus and anti-cheat products place on certain processes. An anti-virus might register
a process handle create callback to prevent processes from opening the Local Security
Authority Subsystem Service (LSASS) which could contain sensitive credentials in its
memory. An anti-cheat might prevent processes from opening the game they are
protecting, because cheaters can access key regions of the game memory to gain an
unfair advantage.

When you look at the thirteen process access rights, do any of them strike out as
potentially malicious? I investigated that question by taking a look at the drivers for
several anti-virus products. Specifically, what access rights did they filter for in their
process handle create callbacks? I came up with this subset of access rights that were
often directly associated with potentially malicious operations: PROCESS_ALL_ACCESS ,

https://twitter.com/diversenok_zero/status/1463844989612568581
https://billdemirkapi.me/abusing-windows-implementation-of-fork-for-stealthy-memory-operations/#didnt-i-see-this-on-twitter-yesterday
https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-openprocess
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-obregistercallbacks

3/9

PROCESS_CREATE_THREAD , PROCESS_DUP_HANDLE , PROCESS_SET_INFORMATION ,
PROCESS_SUSPEND_RESUME , PROCESS_TERMINATE , PROCESS_VM_OPERATION ,
PROCESS_VM_READ , and PROCESS_VM_WRITE .

This leaves four other access rights that were discovered to be largely ignored:

1. PROCESS_QUERY_INFORMATION - Required to retrieve general information about a
process such as its token, exit code, and priority class.

2. PROCESS_QUERY_LIMITED_INFORMATION - Required to retrieve certain limited
information about a process.

3. PROCESS_SET_QUOTA - Required to set memory limits using
SetProcessWorkingSetSize.

4. PROCESS_CREATE_PROCESS - Required to create a process.

These access rights were particularly interesting because if we could find a way to abuse
any of them, we could potentially evade the detection of a majority of anti-virus products.

Most of these remaining rights cannot modify important aspects of a process.
PROCESS_QUERY_INFORMATION and PROCESS_QUERY_LIMITED_INFORMATION are

purely for reading informational details about a process. PROCESS_SET_QUOTA does
impact the process, but does not provide much surface to abuse. For example, being able
to set a processes' performance limits provides limited usefulness in an attack.

What about PROCESS_CREATE_PROCESS ? This access right allows a caller to "create a
process" using the process handle, but what does that mean?

In practice, someone with a process handle containing this access right can create
processes on behalf of that process. In the following sections, we will explore existing
techniques that abuse this access right and its undiscovered potential.

Parent Process Spoofing

An existing evasion technique called "parent process ID spoofing" is used when a
malicious application would like to create a child process under a different process. This
allows an attacker to create a process while having it appear as if it was launched by
another legitimate application.

At a high-level, common implementations of parent process ID spoofing will:

1. Call InitializeProcThreadAttributeList to initialize an attribute list for the child
process.

2. Use OpenProcess to obtain a PROCESS_CREATE_PROCESS handle to the fake
parent process.

3. Update the previously initialized attribute list with the parent process handle using
UpdateProcThreadAttribute.

4. Create the child process with CreateProcess, passing extended startup information
containing the process attributes.

https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-initializeprocthreadattributelist
https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-openprocess
https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-updateprocthreadattribute
https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-createprocessa

4/9

This technique provides more usefulness than just being able to spoof the parent process
of a child. It can be used to attack the parent process itself as well.

When creating a process, if the attacker specifies TRUE for the InheritHandles argument,
all inheritable handles present in the parent process will be given to the child. For
example, if a process has an inheritable thread handle and an attacker would like to
obtain this handle indirectly, the attacker can abuse parent process spoofing to create
their own malicious child process which inherits these handles.

The malicious child process would then be able to abuse these inherited handles in an
attack against the parent process, such as a child using asynchronous procedure calls
(APCs) on the parent's thread handle. Although this variation of the technique does
require that the parent have critical handles set to be inheritable; several common
applications, such as Firefox and Chrome, have inheritable thread handles.

Ways to Create Processes

The previous section explored one existing attack that used the high-level kernel32.dll
function CreateProcess, but this is not the only way to create a process. Kernel32
provides abstractions such as CreateProcess which allow developers to avoid having to
use ntdll functions directly.

When taking a look under the hood, kernel32 uses ntdll functions and does much of the
heavy lifting required to perform NtXx calls. OpenProcess uses NtCreateUserProcess,
which has the following function prototype:

NTSTATUS NTAPI
NtCreateUserProcess (
 PHANDLE ProcessHandle,
 PHANDLE ThreadHandle,
 ACCESS_MASK ProcessDesiredAccess,
 ACCESS_MASK ThreadDesiredAccess,
 POBJECT_ATTRIBUTES ProcessObjectAttributes,
 POBJECT_ATTRIBUTES ThreadObjectAttributes,
 ULONG ProcessFlags,
 ULONG ThreadFlags,
 PRTL_USER_PROCESS_PARAMETERS ProcessParameters,
 PPROCESS_CREATE_INFO CreateInfo,
 PPROCESS_ATTRIBUTE_LIST AttributeList
);

NtCreateUserProcess is not the only low-level function exposed to create processes.
There are two legacy alternatives: NtCreateProcess and NtCreateProcessEx . Their
function prototypes are:

5/9

NTSTATUS NTAPI
NtCreateProcess (
 PHANDLE ProcessHandle,
 ACCESS_MASK DesiredAccess,
 POBJECT_ATTRIBUTES ObjectAttributes,
 HANDLE ParentProcess,
 BOOLEAN InheritObjectTable,
 HANDLE SectionHandle,
 HANDLE DebugPort,
 HANDLE ExceptionPort
);

NTSTATUS NTAPI
NtCreateProcessEx (
 PHANDLE ProcessHandle,
 ACCESS_MASK DesiredAccess,
 POBJECT_ATTRIBUTES ObjectAttributes,
 HANDLE ParentProcess,
 ULONG Flags,
 HANDLE SectionHandle,
 HANDLE DebugPort,
 HANDLE ExceptionPort,
 BOOLEAN InJob
);

NtCreateProcess and NtCreateProcessEx are quite similar but offer a different route of
process creation when compared to NtCreateUserProcess.

Forking Your Own Process

A lesser documented limited technique available to developers is the ability to fork
processes on Windows. The undocumented function developers can use to fork their own
process is RtlCloneUserProcess. This function does not directly call the kernel and
instead is a wrapper around NtCreateUserProcess.

A minimal implementation of forking through NtCreateUserProcess can be achieved
trivially. By calling NtCreateUserProcess with NULL for both object attribute arguments,
NULL for the process parameters, an empty (but not NULL) create info argument, and a
NULL attribute list; a fork of the current process will be created.

One question that arose when performing this research was: What is the difference
between forking a process and creating a new process with handles inherited?
Interestingly, the minimal forking mechanism present in Windows does not only include
inheritable handles, but private memory regions too. Any dynamically allocated pages as
part of the parent will be accessible at the same location in the child as well.

Both RtlCloneUserProcess and the minimal implementation described are publicly known
techniques for simulating fork on Windows, but is there any use forking provides to an
attacker?

https://gist.github.com/Cr4sh/126d844c28a7fbfd25c6
https://github.com/Microwave89/createuserprocess/

6/9

In 2019, Microsoft Research Labs published a paper named "A fork() in the road", which
discussed how what used to be a "clever hack" has "long outlived its usefulness and is
now a liability". The paper discusses several areas, such as how fork is a "terrible
abstraction" and how it compromises OS implementations. The section titled "FORK IN
THE MODERN ERA" is particularly relevant:

Fork is insecure. By default, a forked child inherits everything from its parent, and
the programmer is responsible for explicitly removing state that the child
does not need by: closing file descriptors (or marking them as close-on-exec),
scrubbing secrets from memory, isolating namespaces using unshare() [52], etc.
From a security perspective, the inherit by-default behaviour of fork violates the
principle of least privilege.

This section covers the security risk that is posed by the ability to fork processes.
Microsoft provides the example that a forked process "inherits everything from its parent"
and that "the programmer is responsible for explicitly removing state that the child does
not need". What happens when the programmer is a malicious attacker?

Forking a Remote Process

I propose a new method of abusing the limited fork functionality present in Windows.
Instead of forking your own process, what if you forked a remote process? If an attacker
could fork a remote process, they would be able to gain insight into the target process
without needing a sensitive process access right such as PROCESS_VM_READ , which
could be monitored by anti-virus.

With only a PROCESS_CREATE_PROCESS handle, an attacker can fork or "duplicate" a
process and access any secrets that are present in it. When using the legacy
NtCreateProcess(Ex) variant, forking a remote process is relatively simple.

By passing NULL for the SectionHandle and a PROCESS_CREATE_PROCESS handle of the
target for the ParentProcess arguments, a fork of the remote process will be created and
an attacker will receive a handle to the forked process. Additionally, as long as the
attacker does not create any threads, no process creation callbacks will fire. This means
that an attacker could read the sensitive memory of the target and anti-virus wouldn't
even know that the child process had been created.

When using the modern NtCreateUserProcess variant, all an attacker needs to do is use
the previous minimal implementation of forking your own process but pass the target
process handle as a PsAttributeParentProcess in the attribute list.

With the child handle, an attacker could read sensitive memory from the target application
for a variety of purposes. In the following sections, we'll cover approaches to detection
and an example of how an attacker could abuse this in a real attack.

Example: Anti-Virus Tampering

https://www.microsoft.com/en-us/research/publication/a-fork-in-the-road/

7/9

Some commercial anti-virus solutions may include self-integrity features designed to
combat tampering and information disclosure. If an attacker could access the memory of
the anti-virus process, it is possible that sensitive information about the system or the
anti-virus itself could be abused.

With Process Forking, an attacker can gain access to both private memory and
inheritable handles with only a PROCESS_CREATE_PROCESS handle to the victim process.
A few examples of attacks include:

1. An attacker could read the encryption keys that are used to communicate with a
trusted anti-virus server to decrypt or potentially tamper with this line of
communication. For example, an attacker could pose as a man-in-the-middle
(MiTM) with these encryption keys to prevent the anti-virus client from
communicating alerts or spoof server responses to further tamper with the client.

2. An attacker could gain access to sensitive information about the system that was
provided by the kernel. This information could include data from kernel callbacks
that an attacker otherwise would not have access to from usermode.

3. An attacker could gain access to any handle the anti-virus process holds that is
marked as inheritable. For example, if the anti-virus protects certain files from being
accessed, such as sensitive configuration files, an attacker may be able to inherit a
handle opened by the anti-virus process itself to access that protected file.

Example: Credential Dumping

One obvious target for a stealthy memory reading technique such as this is the Local
Security Authority Subsystem Service (LSASS). LSASS is often the target of attackers
that wish to capture the credentials for the current machine.

In a typical attack, a malicious program such as Mimikatz directly interfaces with LSASS
on the victim machine, however, a stealthier alternative has been to dump the memory of
LSASS for processing on an attacker machine. This is to avoid putting a well-known
malicious program such as Mimikatz on the victim environment which is much more likely
to be detected.

With Process Forking, an attacker can evade defensive solutions that monitor or prevent
access to the LSASS process by dumping the memory of an LSASS fork instead:

1. Set debug privileges for your current process if you are not already running as
SYSTEM.

2. Open a file to write the memory dump to.
3. Create a fork child of LSASS.
4. Use the common MiniDumpWriteDump API on the forked child.
5. Exfiltrate the dump file to an attacker machine for further processing.

Proof of Concept

A simple proof-of-concept utility and library have been published on GitHub.

https://github.com/gentilkiwi/mimikatz
https://docs.microsoft.com/en-us/windows/win32/api/minidumpapiset/nf-minidumpapiset-minidumpwritedump
https://github.com/D4stiny/ForkPlayground

8/9

Conclusion

Process Forking still requires that an attacker would have access to the victim process in
the default Windows security model. Process Forking does not break integrity boundaries
and attackers are restricted to processes running at the same privilege level they are.
What Process Forking does offer is a largely ignored alternative to handle rights that are
known to be potentially malicious.

Remediation may be difficult depending on the context of the solution relying on handle
callbacks. An anti-cheat defending a single process may be able to get away with
stripping PROCESS_CREATE_PROCESS handles entirely, but anti-virus solutions protecting
multiple processes attempting a similar fix could face compatibility issues. It is
recommended that vendors who opt to strip this access right initially audit its usage within
customer environments and limit the processes they protect as much as possible.

Didn't I see this on Twitter yesterday?

Did you know that it is possible to read memory using a
PROCESS_CREATE_PROCESS handle? Just call NtCreateProcessEx to clone
the target process (and its entire address space), and then read anything you want
from there.😎

— diversenok (@diversenok_zero) November 25, 2021

Yesterday morning, I saw this interesting tweet from @diversenok_zero explaining the
same method discussed in this blog post.

One approach I like to take with new research or methods I find that I haven't investigated
thoroughly yet is to generate a SHA256 hash of the idea and then post it somewhere
publicly where the timestamp is recorded. This way, in cases like this where my research
conflicts with what another researcher was working on, I can always prove I discovered
the trick on a certain date. In this case, on June 19th 2021, I posted a public GitHub gist
of the following SHA256 hash:

D779D38405E8828F5CB27C2C3D75867C6A9AA30E0BD003FECF0401BFA6F9C8C7

You can read the memory of any process that you can open a
PROCESS_CREATE_PROCESS handle to by calling NtCreateProcessEx using
the process handle as the ParentHandle argument and providing NULL for the
section argument.

If you generate a SHA256 hash of the quote above, you'll notice it matches the one I
publicly posted back in June.

I have been waiting to publish this research because I am currently in the process of
responsibly disclosing the issue to vendors whose products are impacted by this attack.
Since the core theory of my research was shared publicly by @diversenok_zero, I
decided it would be alright to share what I found around the technique as well.

https://twitter.com/diversenok_zero/status/1463844989612568581?ref_src=twsrc%5Etfw
https://twitter.com/diversenok_zero
https://gist.github.com/D4stiny/31c0523b5bb824085ceb809ed214f193/revisions

9/9

