
1/20

Offensive Windows IPC Internals 1: Named Pipes
csandker.io/2021/01/10/Offensive-Windows-IPC-1-NamedPipes.html

10 Jan 2021 (Last Updated: 6 Jan 2022)

Contents:

Introduction

This post marks the start of a series of posts about the internals and interesting bits of

various Windows based Inter-Process-Communication (IPC) technology components.

Initially this series will cover the following topics:

Named Pipes

LPC

ALPC

RPC

A few IPC technology components are therefore left out, but I might append this series

sometime and include for example some of these:

Window Messages

DDE (which is based on Window Messages)

Windows Sockets

Mail Slots

Alright so let’s get down to it with Named Pipes…

Although the name might sound a bit odd pipes are a very basic and simple technology to

enable communication and share data between two processes, where the term pipe simply

describes a section of shared memory used by these two processes.

To term this correctly right from the beginning, the IPC technology we’re speaking about is

called ‘pipes’ and there are two types of pipes:

Named Pipes

Anonymous Pipes

Most of the time when speaking about pipes you’re likely referring to Named Pipes as these

offer the full feature set, where anonymous pipes are mostly used for child-parent

communications. This also implies: Pipe communication can be between two processes on

the same system (with named and anonymous pipes), but can also be made across machine

boundaries (only named pipes can talk across machine boundaries). As Named Pipes are

most relevant and support the full feature set, this post will focus only on Named Pipes.

https://csandker.io/2021/01/10/Offensive-Windows-IPC-1-NamedPipes.html

2/20

To add some historical background for Named Pipes: Named Pipes originated from the OS/2

times. It’s hart to pin down the exact release date named pipes were introduced to Windows,

but at least it can be said that it must have been supported in Windows 3.1 in 1992 - as this

support is stated in the Windows/DOS Developer’s Journal Volume 4, so it’s fair to assume

named pipes have been added to Windows in the early 1990’s.

Before we dive into the Named Pipe internals, please take note that a few code snippets will

follow that are taken from my public Named Pipe Sample Implementation. Whenever you

feel you want some more context around the snippets head over to the code repo and review

the bigger picture.

Named Pipe Messaging

Alright so let’s break things down to get a hold of Named Pipe internals. When you’ve never

heard of Named Pipes before imaging this communication technology like a real, steel pipe -

you got a hollow bar with two ends and if you shout something into one end a listener will

hear your words on the other end. That’s all a Named Pipe does, it transports information

from one end to another.

If you’re a Unix user you sure have used pipes before (as this is not a pure Windows

technology) with something like this: cat file.txt | wc -l . A command that outputs

the contents of file.txt , but instead of displaying the output to STDOUT (which could be

your terminal window) the output is redirected (“piped”) to the input of your second

command wc -l , which thereby counts the lines of your file. That’s an example of an

anonymous pipe.

A Windows based Named Pipe is as easily understood as the above example. To enable us to

use the full feature set of pipes, we’ll move away from Anonymous Pipes and create a Server

and a Client that talk to each other.

A Named Pipe simply is an Object, more specifically a FILE_OBJECT, that is managed by a

special file system, the Named Pipe File System (NPFS):

https://archive.org/details/win_dos_dev_jrnl_v4n4_apr_93/page/n23/mode/2up?q=Pipes
https://github.com/csandker/InterProcessCommunication-Samples/tree/master/NamedPipes/CPP-NamedPipe-Basic-Client-Server

3/20

When you create a Named Pipe, let’s say we call it ‘fpipe’, under the hood you’re creating a

FILE_OBJECT with your given name of ‘fpipe’ (hence: named pipe) on a special device drive

called ‘pipe’.

Let’s wrap that into a something practical. A named pipe is created by calling the WinAPI

function CreateNamedPipe, such as with the below [Source]:

HANDLE serverPipe = CreateNamedPipe(
 L"\\\\.\\pipe\\fpipe", // name of our pipe, must be in the form of \\.\pipe\
<NAME>
 PIPE_ACCESS_DUPLEX, // open mode, specifying a duplex pipe so server and client
can send and receive data
 PIPE_TYPE_MESSAGE, // MESSAGE mode to send/receive messages in discrete units
(instead of a byte stream)
 1, // number of instanced for this pipe, 1 is enough for our use
case
 2048, // output buffer size
 2048, // input buffer size
 0, // default timeout value, equal to 50 milliseconds
 NULL // use default security attributes
);

For now the most interesting part of this call is the \\\\.\\pipe\\fpipe .

C++ requires escaping of slashes, so language independent this is equal to

\\.\pipe\fpipe . The leading ‘\.’ refers to your machines global root directory, where the

term ‘pipe’ is a symbolic link to the NamedPipe Device.

https://github.com/csandker/InterProcessCommunication-Samples/blob/master/NamedPipes/CPP-NamedPipe-Basic-Client-Server/CPP-Basic-PipeServer/CPP-Basic-PipeServer.cpp#L88

4/20

Since a Named Pipe Object is a FILE_OBJECT, accessing the named pipe we just created is

equal to accessing a “normal” file.

Therefore connecting to a named pipe from a client is therefore as easy as calling

CreateFile [Source]:

HANDLE hPipeFile = CreateFile(L"\\\\127.0.0.1\\pipe\\fpipe", GENERIC_READ |
GENERIC_WRITE, 0, NULL, OPEN_EXISTING, 0, NULL);

Once connected reading from a pipe just needs a call to ReadFile [Source]:

ReadFile(hPipeFile, pReadBuf, MESSAGE_SIZE, pdwBytesRead, NULL);

Before you can read some data off a pipe, you want your server to write some data to it

(which you can read.). That is done by calling - who would have guessed it -

WriteFile [Source]:

WriteFile(serverPipe, message, messageLenght, &bytesWritten, NULL);

But what actually happens when you “write” to a pipe?

Once a client connects to your server pipe, the pipe that you created is no longer in a listening

state and data can be written to it. The user land call to WriteFile is dispatched to kernel

land, where NtWriteFile is called, which determines all the bits and pieces about the

Write-Operation, e.g. which device object is associated with the given file, whether or not the

Write-Operation should be made synchronous (see section Overlapping Pipe I/O, Blocking

mode & In-/Out Buffers), the I/O Request Packet (IRP) is set up and eventually NtWriteFile

takes care that your data is written to the file. In our case the specified data is not written to

an actual file on disk, but to a shared memory section that is referenced by the file handle

return from CreateNamedPipe .

Finally - as mentioned in the introduction - Named Pipes can also be used over a network

connection across system boundaries.

There are no additional implementations needed to call a remote Named Pipe server, just

make sure that your call to CreateFile specifies an IP or hostname (as with the example

https://github.com/csandker/InterProcessCommunication-Samples/blob/master/NamedPipes/CPP-NamedPipe-Basic-Client-Server/CPP-Basic-PipeClient/CPP-Basic-PipeClient.cpp#L58
https://github.com/csandker/InterProcessCommunication-Samples/blob/master/NamedPipes/CPP-NamedPipe-Basic-Client-Server/CPP-Basic-PipeClient/CPP-Basic-PipeClient.cpp#L65
https://github.com/csandker/InterProcessCommunication-Samples/blob/master/NamedPipes/CPP-NamedPipe-Basic-Client-Server/CPP-Basic-PipeServer/CPP-Basic-PipeServer.cpp#L110
https://docs.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-createfilea

5/20

above).

Let’s make a guess: What network protocol will be used when calling a remote pipe server?

…. drum rolls … absolutely unsurprising it is SMB.

An SMB connection is made to the remote server, which is by default initialized by a

negotiation request to determine the network authentication protocol. Unlike with other IPC

mechanisms, such as with RPC, you as a server developer can not control the network

authentication protocol as this is always negotiated through SMB. Since Kerberos is the

preferred authentication scheme since Windows 2000, Kerberos will be negotiated if

possible.

Note: From a client perspective you can effectively choose the authentication protocol by

choosing to connect to a hostname or to an IP. Due to the design of Kerberos it cannot handle

IPs very well and as such if you choose to connect to an IP address the result of the

negotiation will always be NTLM(v2). Whereas when you connect to a hostname you will

most likely always end up using Kerberos.

Once the authentication is settled, the actions that client and server want to perform are once

again just classic file actions, that are handled by SMB just as any other file operation, e.g. by

starting a ‘Create Request File’ request as shown below:

Data Transfer Modes

6/20

Named pipes offer two basic communication modes: byte mode and message mode.

In byte mode, messages travel as a continuous stream of bytes between the client and the

server. This means that a client application and a server application do not know precisely

how many bytes are being read from or written to a pipe at any given moment. Therefore a

write on one side will not always result in a same-size read on the other. This allows a client

and a server to transfer data without caring about the size of the data.

In message mode, the client and the server send and receive data in discrete units. Every

time a message is sent on the pipe, it must be read as a complete message. If you read from a

server pipe in message mode, but your read buffer is too small to hold all of the data then the

portion of data that fits in your buffer will be copied over to it, the remaining data stays in the

server’s shared memory section and you’ll get an error 234 (0xEA, ERROR_MORE_DATA)

to indicate that there is more data to fetch.

A visual comparison of the messages modes is shown below, taken from “Network

programming for Microsoft Windows” (1999):

Overlapping Pipe I/O, Blocking mode & In-/Out Buffers

Overlapping I/O, Blocking mode and In-/Out Buffers are not amazingly important from a

security standpoint, but being aware that these exists and what they mean can aid

understanding, communication, building and debugging named pipes. Therefore I will add

these concepts here briefly.

Overlapping I/O

Several Named Pipe related functions, such as ReadFile, WriteFile, TransactNamedPipe, and

ConnectNamedPipe can perform pipe operations either synchronous, meaning the

executing thread is waiting for the operation to complete before continuing, or

asynchronous, meaning the executing thread fires the action and continues without

https://docs.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-readfile
https://docs.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-writefile
https://docs.microsoft.com/en-us/windows/win32/api/namedpipeapi/nf-namedpipeapi-transactnamedpipe
https://docs.microsoft.com/en-us/windows/win32/api/namedpipeapi/nf-namedpipeapi-connectnamedpipe

7/20

waiting for its completion.

It’s important to note that asynchronous pipe operations can only be made on a pipe (server)

that allows overlapped I/O by setting the FILE_FLAG_OVERLAPPED within the

CreateNamedPipe call.

Asynchronous calls can be made either by specifying an OVERLAPPED structure as the last

parameter to each of the above mentioned ‘standard’ pipe actions. such as ReadFile, or by

specifying a COMPLETION_ROUTINE as the last parameter to the ‘extended’ pipe actions,

such as ReadFileEx. The former, OVERLAPPED structure, method is event based, meaning

an event object must be created and is signaled once the operation is completed, while the

COMPLETION_ROUTINE method is callback based, meaning a callback routine is passed to

the executing thread, which is queued and executed once signaled. More details on this can

be found here with a sample implementation by Microsoft here.

Blocking mode

The blocking mode behavior is defined when setting up a named pipe server with

CreateNamedPipe by using (or omitting) a flag in the dwPipeMode parameter. The following

two dwPipeMode flags define the blocking mode of the server:

PIPE_WAIT (default): Blocking mode enabled. When using named pipe operations,

such as ReadFile on a pipe that enabled blocking mode the operation waits for

completion. Meaning that a read operation on such a pipe would wait until there is data

to read, a write operation would wait until all data is written. This can of course cause

an operation to wait indefinitely in some situations.

PIPE_NOWAIT: Blocking mode disabled. Named pipe operations, such as ReadFile,

return immediately. You need routines, such as Overlapping I/O, to ensure all data is

read or written.

In-/Out Buffers

By In-/Out Buffers I’m referring to the input and output buffers of the named pipe server

that you create when calling CreateNamedPipe and more precisely to the sizes of these

buffers in the nInBufferSize and nOutBufferSize parameters.

When performing read and write operations your named pipe server uses non-paged

memory (meaning physical memory) to temporarily store data which is to be read or written.

An attacker who is allowed to influence these values for a created server can abuse these to

potentially cause a system crash by choosing large buffers or to delay pipe operations by

choosing a small buffer (e.g. 0):

https://docs.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-createnamedpipea
https://docs.microsoft.com/en-us/windows/win32/api/minwinbase/ns-minwinbase-overlapped
https://docs.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-readfile
https://docs.microsoft.com/en-us/windows/win32/api/minwinbase/nc-minwinbase-lpoverlapped_completion_routine
https://docs.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-readfileex
https://docs.microsoft.com/en-gb/windows/win32/ipc/synchronous-and-overlapped-input-and-output
https://docs.microsoft.com/en-gb/windows/win32/ipc/named-pipe-server-using-overlapped-i-o
https://docs.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-createnamedpipea
https://docs.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-readfile
https://docs.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-readfile
https://docs.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-createnamedpipea

8/20

Large buffers: As the In-/Out Buffers are non-paged the server will run out of

memory if they are chosen too big. However, the nInBufferSize and nOutBufferSize

parameters are not ‘blindly’ accepted by the system. The upper limit is defined by a

system depended constant; I couldn’t find super accurate information about this

constant (and didn’t dig through the headers); This post indicates that it’s ~4GB for an

x64 Windows7 system.

Small buffers: A buffer size of 0 is absolutely valid for nInBufferSize and

nOutBufferSize. If the system would strictly enforce what it’s been told you wouldn’t be

able to write anything to your pipe, cause a buffer of size 0 is … well, a not existing

buffer. Gladly the system is smart enough to understand that you’re asking for a

minimum buffer and will therefore expand the actual buffer allocated to the size it

receives, but that comes with a consequence to performance. A buffer size of 0 means

every byte must be read by the process on the other side of the pipe (and thereby

clearing the buffer) before new data can be written to the buffer. This is true for both,

the nInBufferSize and nOutBufferSize. A buffer of size 0 could thereby cause server

delays.

Named Pipe Security

Once again we can make this chapter about how to set and control the security of a named

pipe rather short, but it’s important to be aware how this is done.

The only gear you can turn when you want to secure your named pipe setup is setting a

Security Descriptor for the named pipe server as the last parameter (lpSecurityAttributes)

to the CreateNamedPipe call.

If you want some background on what a Security Descriptor is, how it’s used and how it could

look like you’ll find the answers in my post A Windows Authorization Guide.

Setting this Security Descriptor is optional; A default Security Descriptor can be be set by

specifying NULL to the lpSecurityAttributes parameter.

The Windows docs define what the default Security Descriptor does for your named pipe

server:

The ACLs in the default security descriptor for a named pipe grant full control to the
LocalSystem account, administrators, and the creator owner. They also grant read access to
members of the Everyone group and the anonymous account.

 Source: CreateNamedPipe > Paremter > lpSecurityAttributes

So by default Everyone can read from your named pipe server if you don’t specify a Security

Descriptor, regardless if the reading client is on the same machine or not.

If you connect to a named pipe server without a Security Descriptor set but still get an Access

https://blog.stephencleary.com/2010/03/io-limitation-in-windows.html
https://docs.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-createnamedpipea
https://csandker.io/2018/06/14/AWindowsAuthorizationGuide.html#the-security-descriptor-dacl--sacl
https://docs.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-createnamedpipea#parameters

9/20

Denied Error (error code: 5) be sure you’ve only specified READ access (note that the

example above specifies READ and WRITE access with GENERIC_READ | GENERIC_WRITE).

For remote connections, note once again - as described at the end of the Named Pipe

Messaging chapter - that the network authentication protocol is negotiated

between the client and server through the SMB protocol. There is no way to

programmatically enforce the use of the stronger Kerberos protocol (you only could disable

NTLM on the server host).

Impersonation

Impersonation is a simple concept that we’ll need in the following section to talk about attack

vectors with named pipes.

If you’re familiar with Impersonation feel free to skip this section; Impersonation is not

specific to Named Pipes.

If you’re not yet came across Impersonation in a Windows environment, let me summarize

this concept quickly for you:

Impersonation is the ability of a thread to execute in a security context different from the

security context of the process that owns the thread. Impersonation typically applies in a

Client-Server architecture where a client connects to the server and the server could (if

needed) impersonate the client. Impersonation enables the server (thread) to perform

actions on behalf of the client, but within the limits of the client’s access rights.

A typical scenario would be a server that wants the access some records (say in database), but

only the client is allowed to access its own records. The server could now reply back to the

client, asking to fetch the records itself and send these over to the server, or the server could

use an authorization protocol to prove the client allowed the server to access the record, or -

and this is what Impersonation is - the client sends the server some identification

information and allows the server to switch into the role of the client. Somewhat

like the client giving its driver license to the server along with the permission to use that

license to identify towards other parties, such as a gatekeeper (or more technically a database

server).

The identification information, such as the information specifying who the client is (such as

the SID) are packed in a structure called a security context. This structure is baked deeply

into the internals of the operating system and is a required piece of information for inter

process communication. Due to that the client can’t make an IPC call without a security

context, but it needs a way to specify what it allows the server to know about and do with its

identity. To control that Microsoft created so called Impersonation Levels.

The SECURITY_IMPERSONATION_LEVEL enumeration structure defines four

Impersonation Levels that determine the operations a server can perform in the client’s

context.

https://docs.microsoft.com/en-us/troubleshoot/windows-server/identity/security-identifiers-in-windows

10/20

SECURITY_IMPERSONATION_LEVEL DescriptionSECURITY_IMPERSONATION_LEVEL Description

SecurityAnonymous The server cannot impersonate or identify the
client.

SecurityIdentification The server can get the identity and privileges of
the client, but cannot impersonate the client.

SecurityImpersonation The server can impersonate the client’s security
context on the local system.

SecurityDelegation The server can impersonate the client’s security
context on remote systems.

For more background information on Impersonation have a read through Microsoft’s docs

for Client Impersonation.

For some context around Impersonation have a look at the Access Tokens and the following

Impersonation section in my post about Windows Authorization.

Impersonating a Named Pipe Client

Okay, so while we’re on the topic and in case you’re not totally bored yet. Let’s have a quick

run down of what actually happens under the hood if a server impersonated a client.

If you’re more interested in how to implement this, you’ll find the answer in my sample

implementation here.

Step 1: The server waits for an incoming connection from a client and afterwards calls

the ImpersonateNamedPipeClient function.

Step 2: This call results in a call to NtCreateEvent (to create a callback event) and to

NtFsControlFile, which is the function executing the impersonation.

Step 3: NtFsControlFile is a general purpose function where its action is specified by

an argument, which in this case is FSCTL_PIPE_Impersonate.

The below is based on the open source code of ReactOS, but i think it’s fair to assume

the Windows Kernel Team implemented it in a similar way.

Step 4: Further down the call stack NpCommonFileSystemControl is called where

FSCTL_PIPE_IMPERSONATE is passed as an argument and used in a switch-case

instruction to determine what to do.

Step 5: NpCommonFileSystemControl calls NbAcquireExeclusiveVcb to lock an object

and NpImpersonate is called given the server’s pipe object and the IRP (I/O Request

Object) issued by the client.

Step 6: NpImpersonate then in turn calls SeImpersonateClientEx with the client’s

security context, which has been obtained from the client’s IRP, as a parameter.

https://docs.microsoft.com/en-us/windows/win32/secauthz/client-impersonation
https://csandker.io/2018/06/14/AWindowsAuthorizationGuide.html#access-tokens
https://csandker.io/2018/06/14/AWindowsAuthorizationGuide.html#impersonation
https://csandker.io/2018/06/14/AWindowsAuthorizationGuide.html
https://github.com/csandker/InterProcessCommunication-Samples/blob/master/NamedPipes/CPP-NamedPipe-Basic-Client-Server/CPP-Basic-PipeServer/CPP-Basic-PipeServer.cpp#L21
https://docs.microsoft.com/en-us/windows/win32/api/namedpipeapi/nf-namedpipeapi-impersonatenamedpipeclient
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/ntifs/nf-ntifs-zwcreateevent
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/ntifs/nf-ntifs-ntfscontrolfile
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/ntifs/nf-ntifs-ntfscontrolfile
https://reactos.org/
https://doxygen.reactos.org/d4/de2/npfs_2fsctrl_8c_source.html#l00755
https://doxygen.reactos.org/d4/de2/npfs_2fsctrl_8c_source.html#l00755
https://doxygen.reactos.org/d4/d30/drivers_2filesystems_2npfs_2npfs_8h.html#a16f8a0a170b7db81958977197c32d2a7
https://doxygen.reactos.org/d4/de2/npfs_2fsctrl_8c.html#a0509b29312815e37ad722b9e3966b086
https://doxygen.reactos.org/d4/de2/npfs_2fsctrl_8c.html#a0509b29312815e37ad722b9e3966b086
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/ntifs/nf-ntifs-seimpersonateclientex

11/20

Step 7: SeImpersonateClientEx in turn calls PsImpersonateClient with the server’s

thread object and the client’s security token, which is extracted from the client’s

security context

Step 8: The server’s thread context is then changed to the client’s security context.

Step 9: Any action the server takes and any function the server calls while in the

security context of the client are made with the identify of the client and thereby

impersonating the client.

Step 10: If the server is done with what it intended to do while being the client, the

server calls RevertToSelf to switch back to its own, original thread context.

Attack Surface

Client Impersonation

Sooo finally we’re talking about attack surface. The most important attack vector based on

named pipes is Impersonation.

Luckily we’ve introduced and understood the concept of Impersonation already in the above

section, so we can dive right in.

Attack scenario

Impersonation with named pipes can best be abused when you got a service, program or

routine that allows you to specify or control to access a file (doesn’t matter if it allows you

READ or WRITE access or both). Due to the fact that Named Pipes are basically

FILE_OBJECTs and operate on the same access functions as regular files (ReadFile,

WriteFile, CreateFile, …) you can specify a named pipe instead of a regular file name and

make your victim process connect to a named pipe under your control.

Prerequisites

There are two important aspects you need to check when attempting to impersonate a client.

The first is to check how the client implements the file access, more specifically does the

client specify the SECURITY_SQOS_PRESENT flag when calling CreateFile ?

A vulnerable call to CreateFile looks like this:

hFile = CreateFile(pipeName, GENERIC_READ, 0, NULL, OPEN_EXISTING, 0, NULL);

Whereas a safe call to CreateFile like this:

// calling with explicit SECURITY_IMPERSONATION_LEVEL
hFile = CreateFile(pipeName, GENERIC_READ, 0, NULL, OPEN_EXISTING,
SECURITY_SQOS_PRESENT | SECURITY_IDENTIFICATION , NULL);
// calling without explicit SECURITY_IMPERSONATION_LEVEL
hFile = CreateFile(pipeName, GENERIC_READ, 0, NULL, OPEN_EXISTING,
SECURITY_SQOS_PRESENT, NULL);

https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/ntifs/nf-ntifs-seimpersonateclientex
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/ntifs/nf-ntifs-psimpersonateclient
https://docs.microsoft.com/en-us/windows/win32/api/securitybaseapi/nf-securitybaseapi-reverttoself
https://docs.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-readfile
https://docs.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-writefile
https://docs.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-createfilea
https://docs.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-createfilea

12/20

By default a call without explicitly specifying the SECURITY_IMPERSONATION_LEVEL (as

with the later example above) is made with the Impersonation Level of SecurityAnonymous.

If the SECURITY_SQOS_PRESENT flag is set without any additional Impersonation
Level (IL) or with an IL set to SECURITY_IDENTIFICATION or
SECURITY_ANONYMOUS you cannot impersonate the client.

The second important aspect to check is the file name, aka. the lpFileName parameter,

given to CreateFile. There is an important distinction between calling local named pipes or

calling remote named pipes.

A call to a local named pipe is defined by the file location \\.\pipe\<SomeName> .

Calls to local pipes can only be impersonated when the SECURITY_SQOS_PRESENT flag is

explicitly set with an Impersonation Level above SECURITY_IDENTIFICATION. Therefore a

vulnerable call looks like this:

hFile = CreateFile(L"\\.\pipe\fpipe", GENERIC_READ, 0, NULL, OPEN_EXISTING,
SECURITY_SQOS_PRESENT | SECURITY_IMPERSONATION, NULL);

To be clear. A safe call to a local pipe would look like this:

hFile = CreateFile(L"\\.\pipe\fpipe", GENERIC_READ, 0, NULL, OPEN_EXISTING, 0, NULL);

This later call is safe even without the SECURITY_SQOS_PRESENT, because a local pipe is

called.

A remote named pipe on the other hand is defined by a lpFileName beginning with a

hostname or an IP, such as: \\ServerA.domain.local\pipe\<SomeName> .

Now comes the important bit:

When the SECURITY_SQOS_PRESENT flag is not present and a remote named pipe is
called the impersonation level is defined by the user privileges running the name pipe
server.

That means that when you call a remote named pipe without the

SECURITY_SQOS_PRESENT flag, your attacker user that runs the pipe must hold the

SeImpersonatePrivilege (SE_IMPERSONATE_NAME) in order to impersonate the

client.

If your user does not hold this privilege the Impersonation Level will be set to

SecurityIdentification (which allows you to identify, but not impersonate the user).

But that also means that if your user holds the SeEnableDelegationPrivilege

(SE_ENABLE_DELEGATION_NAME), the Impersonation Level is set to SecurityDelegation

and you can even authenticate the victim user against other network services.

An important take away here is:

https://docs.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-createfilea
https://docs.microsoft.com/en-us/windows/win32/secauthz/privilege-constants
https://docs.microsoft.com/en-us/windows/win32/secauthz/privilege-constants

13/20

You can make a remote pipe call to a named pipe running on the same machine by
specifying \\127.0.0.1\pipe\<SomeName>

To finally bring the pieces together:

If the SECURITY_SQOS_PRESENT is not set you can impersonate a client if you have

a user with at least SE_IMPERSONATE_NAME privileges, but for named pipes

running on the same machine you need to call them via \\127.0.0.1\pipe\...

If the SECURITY_SQOS_PRESENT is set you can only impersonate a client if an

Impersonation Level above SECURITY_IDENTIFICATION is set along with it

(regardless if you call a named pipe locally or remote).

Misleading Documentation

Microsoft’s documentation about Impersonation Levels (Authorization) states the following:

When the named pipe, RPC, or DDE connection is remote, the flags passed to CreateFile to set
the impersonation level are ignored. In this case, the impersonation level of the client is
determined by the impersonation levels enabled by the server, which is set by a flag on the
server’s account in the directory service. For example, if the server is enabled for delegation,
the client’s impersonation level will also be set to delegation even if the flags passed to
CreateFile specify the identification impersonation level.

 Source: Windows Docs: Impersonation Levels (Authorization)

Be aware here that this is technically true, but it’s somewhat misleading…

The accurate version is: When calling a remote named pipe and you only specify

Impersonation Level flags (and nothing else) to CreateFile then these will be ignore, but if

you specify Impersonation Flags alongside with the SECURITY_SQOS_PRESENT flag, then

these will be respected.

Examples:

https://docs.microsoft.com/en-us/windows/win32/secauthz/impersonation-levels
https://docs.microsoft.com/en-us/windows/win32/secauthz/impersonation-levels
https://docs.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-createfilea

14/20

// In the below call the SECURITY_IDENTIFICATION flag will be respected by the remote
server
hFile = CreateFile(L"\\ServerA.domain.local", GENERIC_READ, 0, NULL, OPEN_EXISTING,
SECURITY_SQOS_PRESENT | SECURITY_IDENTIFICATION, NULL);
/* --> The server will obtain a SECURITY_IDENTIFICATION token */

// In this call the SECURITY_IDENTIFICATION flag will be ignored
hFile = CreateFile(L"\\ServerA.domain.local", GENERIC_READ, 0, NULL, OPEN_EXISTING,
SECURITY_IDENTIFICATION, NULL);
/* --> The server will obtain a token based on the privileges of the user running the
server.
 A user holding SeImpersonatePrivilege will get an SECURITY_IMPERSONATION
token */

// In this call the Impersonation Level will default to SECURITY_ANONYMOUS and will
be respected
hFile = CreateFile(L"\\ServerA.domain.local", GENERIC_READ, 0, NULL, OPEN_EXISTING,
SECURITY_SQOS_PRESENT, NULL);
/* --> The server will obtain a SECURITY_ANONYMOUS token. A call to OpenThreadToken
will result in error 1347 (0x543, ERROR_CANT_OPEN_ANONYMOUS)*/

Implementation

You can find an a full implementation in my sample code here. A quick run down of the

implementation is shown below:

https://github.com/csandker/InterProcessCommunication-Samples/blob/master/NamedPipes/CPP-NamedPipe-Basic-Client-Server/CPP-Basic-PipeServer/CPP-Basic-PipeServer.cpp

15/20

// Create a server named pipe
serverPipe = CreateNamedPipe(
 pipeName, // name of our pipe, must be in the form of \\.\pipe\<NAME>
 PIPE_ACCESS_DUPLEX, // The rest of the parameters don't really matter
 PIPE_TYPE_MESSAGE, // as all you want is impersonate the client...
 1, //
 2048, //
 2048, //
 0, //
 NULL // This should ne NULL so every client can connect
);
// wait for pipe connections
BOOL bPipeConnected = ConnectNamedPipe(serverPipe, NULL);
// Impersonate client
BOOL bImpersonated = ImpersonateNamedPipeClient(serverPipe);
// if successful open Thread token - your current thread token is now the client's
token
BOOL bSuccess = OpenThreadToken(GetCurrentThread(), TOKEN_ALL_ACCESS, FALSE,
&hToken);
// now you got the client token saved in hToken and you can safeyl revert back to
self
bSuccess = RevertToSelf();
// Now duplicate the client's token to get a Primary token
bSuccess = DuplicateTokenEx(hToken,
 TOKEN_ALL_ACCESS,
 NULL,
 SecurityImpersonation,
 TokenPrimary,
 &hDuppedToken
);
// If that succeeds you got a Primary token as hDuppedToken and you can create a
proccess with that token
CreateProcessWithTokenW(hDuppedToken, LOGON_WITH_PROFILE, command, NULL,
CREATE_NEW_CONSOLE, NULL, NULL, &si, &pi);

The result can be seen below:

There are some catches when you implement this on your own:

When you create a process with CreateProcessWithTokenW, you need to RevertToSelf

before calling CreateProcessWithTokenW otherwise you’ll receive an error.

https://docs.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-createprocesswithtokenw
https://docs.microsoft.com/en-us/windows/win32/api/securitybaseapi/nf-securitybaseapi-reverttoself

16/20

When you want to create a window based process (something with a window that pops

up, such as calc.exe or cmd.exe) you need to grant the client access to your Window and

Desktop. A sample implementation allowing all users to access to your Window and

Desktop can be found here.

Instance Creation Race Condition

Named Pipes instances are created and live within a global ‘namespace’ (actually technically

there is no namespace, but this aids understanding that all named pipes live under to same

roof) within the Name Pipe File System (NPFS) device drive. Moreover multiple named pipes

with the same name can exist under this one roof.

So what happens if an application creates a named pipe that already exists? Well if you don’t

set the right flags nothing happens, meaning you won’t get an error and even worse you won’t

get client connections, due to the fact that Named Pipe instances are organized in a FIFO

(First In First Out) stack.

This design makes Named Pipes vulnerable for instance creation race condition

vulnerabilities.

Attack scenario

The attack scenario to exploit such a race condition is as follows: You’ve identified a service,

program or routine that creates a named pipe that is used by client applications running in a

different security context (let’s say they run under the NT Service user). The server creates a

named pipe for communication with the client application(s). Once in a while a client

connects to the server’s named pipe - it wouldn’t be uncommon if the server application

triggers the clients to connect after the server pipe is created. You figure out when and how

the server is started and the name of the pipe it creates.

Now you’re writing a program that creates a named pipe with the same name in a scenario

where your named pipe instance is created before the target server’s named pipe. If the

server’s named pipe is created insecurely it will not notice that a named pipe with the same

name already exist and will trigger the clients to connect. Due to the FIFO stack the clients

will connect to you and you can read or write their data or try to impersonate the clients.

Prerequisites

For this attack to work you need a target server that doesn’t check if a named pipe with the

same name already exists. Usually a server doesn’t have extra code to check manually if a

pipe with the same name already exists - thinking about it you would expect to get an error if

your pipe name already exists right? But that doesn’t happen because two named pipe

instances with the same name are absolutely valid … for whatever reason.

But to counter this attack Microsoft has added the

FILE_FLAG_FIRST_PIPE_INSTANCE flag that can be specified when creating your

https://github.com/csandker/InterProcessCommunication-Samples/blob/master/NamedPipes/CPP-NamedPipe-Basic-Client-Server/CPP-Util/Access.cpp

17/20

named pipe through CreateNamedPipe. When this flag is set your create call will return an

INVALID_HANDLE_VALUE, which will cause an error in a subsequent call to

ConnectNamedPipe.

If you’re target server does not specify the FILE_FLAG_FIRST_PIPE_INSTANCE flag it is

likely vulnerable, however there is one additional thing you need to be aware of on the

attacker side. When creating a named pipe through CreateNamedPipe there is a

nMaxInstances parameter, which specifies…:

The maximum number of instances that can be created for this pipe. The first instance of the
pipe can specify this value;
Source: CreateNamedPipe

So if you set this to ‘1’ (as in the sample code above) you kill your own attack vector. To

exploit an instance creation race condition vulnerability set this to

PIPE_UNLIMITED_INSTANCES.

Implementation

All you need to do for exploitation is create a named pipe instance with the right name at the

right time.

My sample implementation here can be used as an implementation template. Throw this in

you favorite IDE, set in your pipe name, ensure your named pipe is created with the

PIPE_UNLIMITED_INSTANCES flag and fire away.

Instance Creation Special Flavors

Unanswered Pipe Connections

Unanswered pipe connections are those connection attempts issued by clients that - who

would have guessed it - are not successful, hence unanswered, because the pipe that is

requested by the client is not existing.

The exploit potential here is quite clear and simple: If a client wants to connect to a pipe

that’s not existing, we create a pipe that the client can connect to and attempt to manipulate

the client with malicious communication or impersonate the client to gain additional

privileges.

This vulnerability is sometimes also referred to as superfluous pipe connections (but in my

mind that’s not the best terminology for it).

The real question here is: How do we find such clients?

My initial immediate answer would have been: Fire up Procmon and search for failed

CreateFile system calls. But I tested this and it turns out Procmon does not list these calls for

https://docs.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-createnamedpipea
https://docs.microsoft.com/en-us/windows/win32/api/namedpipeapi/nf-namedpipeapi-connectnamedpipe
https://docs.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-createnamedpipea
https://docs.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-createnamedpipea
https://github.com/csandker/InterProcessCommunication-Samples/blob/master/NamedPipes/CPP-NamedPipe-Basic-Client-Server/CPP-Basic-PipeServer/CPP-Basic-PipeServer.cpp
https://docs.microsoft.com/en-us/sysinternals/downloads/procmon
https://docs.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-createfilea

18/20

pipes… maybe that is because the tool is only inspecting/listening on file operations through

the NTFS driver, but i haven’t looked any deeper into this (maybe there is a trick/switch i

didn’t know) - I’ll update if I stumble across the answer…

Another option is the Pipe Monitor of the IO Ninja toolset. This tool requires a license, but

offers a free trial period to play around with it. The Pipe Monitor offers functionality to

inspect pipe activity on the system and comes with a few basic filters for processes, file names

and such. As you want to search for all processes and all file names I filtered for ‘*’, let it run

and used the search function to look for ‘Cannot open’:

If you know any other way to do this using open source tooling, let me know (/ 0xcsandker) ;)

Killing Pipe Servers

If you can’t find unanswered pipe connection attempts, but identified an interesting pipe

client, that you’d like to talk to or impersonate, another option to get the client’s connection

is to kill its current pipe server.

In the Instance Creation Race Condition section I’ve described that you can have multiple

named pipes with the same name in the same ‘namespace’.

If your target server didn’t set the nMaxInstances parameter to ‘1’, you can create a second

named pipe server with the same name and place yourself in the queue to serve clients. You

will not receive any client calls as long as the original pipe server is serving, so the idea for

this attack is to disrupt or kill the original pipe server to step in with your malicious server.

When it comes to killing or disrupting the original pipe server I can’t assist with any general

purpose prerequisites or implementations, because this always depends on who is running

the target server and on your access rights and user privileges.

https://ioninja.com/plugins/pipe-monitor.html
https://twitter.com/0xcsandker

19/20

When analyzing your target server for kill techniques try to think outside the box, there is

more than just sending a shutdown signal to a process, e.g. there could be error conditions

that cause the server to shutdown or restart (remember you’re number 2 in the queue - a

restart might be enough to get in position).

Also note that a pipe server is just an instance running on a virtual FILE_OBJECT, therefore

all named pipe servers will be terminated once their handle reference count reaches 0. A

handle is for example opened by a client connecting to it. So a server could also be killed by

killing all its handles (of course you only gain something if the clients come back to you after

loosing connection).

PeekNamedPipe

There might be scenarios where you’re interested in the data that is exchanged rather than in

manipulating or impersonating pipe clients.

Due to the fact that all named pipe instances live under the same roof, aka. in the same global

‘namespace’ aka. on the same virtual NPFS device drive (as briefly mentioned before) there is

no system barrier that stops you from connecting to any arbitrary (SYSTEM or non-

SYSTEM) named pipe instance and have a look at the data in the pipe (technically ‘in the

pipe’ means within the shared memory section allocated by the pipe server).

Prerequisites

As mentioned in the section Named Pipe Security the only gear you can turn when securing

your named pipe is using a Security Descriptor as the last parameter

(lpSecurityAttributes) to the CreateNamedPipe call. And that’s all that would prevent you

from accessing any arbitrary named pipe instance. So all you need to check for when

searching for a target is if this parameter is set and secured to prevent unauthorized access.

If you need some background on Security Descriptors and what to look for (the ACLs in the

DACL) check out my post: A Windows Authorization Guide

Implementation

When you found a suitable target there is one more thing you need to keep in mind: If you’re

reading from a named pipe by using ReadFile, you’re removing the data from the server’s

shared memory and the next, potentially legitimate client, who attempts to read from the

pipe will not find any data and potentially raise an error.

But you can use the PeekNamedPipe function to view the data without removing it from

shared memory.

An implementation snippet based on the my sample code could look like this:

https://docs.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-createnamedpipea
https://csandker.io/2018/06/14/AWindowsAuthorizationGuide.html#the-security-descriptor-dacl--sacl
https://docs.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-readfile
https://docs.microsoft.com/en-us/windows/win32/api/namedpipeapi/nf-namedpipeapi-peeknamedpipe

20/20

// all the vars you need
const int MESSAGE_SIZE = 512;
BOOL bSuccess;
LPCWSTR pipeName = L"\\\\.\\pipe\\fpipe";
HANDLE hFile = NULL;
LPWSTR pReadBuf[MESSAGE_SIZE] = { 0 };
LPDWORD pdwBytesRead = { 0 };
LPDWORD pTotalBytesAvail = { 0 };
LPDWORD pBytesLeftThisMessage = { 0 };
// connect to named pipe
hFile = CreateFile(pipeName, GENERIC_READ, 0, NULL, OPEN_EXISTING,
SECURITY_SQOS_PRESENT | SECURITY_ANONYMOUS, NULL);
// sneak peek data
bSuccess = PeekNamedPipe(
 hFile,
 pReadBuf,
 MESSAGE_SIZE,
 pdwBytesRead,
 pTotalBytesAvail,
 pBytesLeftThisMessage
);

References

That’s about it, if you want to continue to dig into Named Pipes here are some good

references to start with:

Microsoft’s Docs about pipes at https://docs.microsoft.com/en-

us/windows/win32/ipc/pipes

Blake Watts paper about Named Pipe Security at

http://www.blakewatts.com/namedpipepaper.html

My Sample C++ Implementation at

https://github.com/csandker/InterProcessCommunication-

Samples/tree/master/NamedPipes/CPP-NamedPipe-Basic-Client-Server

https://docs.microsoft.com/en-us/windows/win32/ipc/pipes
http://www.blakewatts.com/namedpipepaper.html
https://github.com/csandker/InterProcessCommunication-Samples/tree/master/NamedPipes/CPP-NamedPipe-Basic-Client-Server

