
1/3

A very simple and alternative PID finder
splintercod3.blogspot.com/p/a-very-simple-and-alternative-pid-finder.html

by splinter_code - 5 May 2022

Recently i came across an interesting feature in Windows often used by Ransomware that is

the Restart Manager API:

"The primary reason software installation and updates require a system restart is that

some of the files that are being updated are currently being used by a running application

or service. Restart Manager enables all but the critical applications and services to be shut

down and restarted . This frees the files that are in use and allows installation operations to

complete."

Of course this is abused in the Ransomware's locker when some process holds lock

conditions on files and getting a handle to the file to be encrypted would return an

ERROR_SHARING_VIOLATION or ERROR_LOCK_VIOLATION.

So basically what they do is to invoke the Restart Manager API functions to retrieve the list of

PIDs that lock a file and then kill them.

My interest peaked in knowing how this happens under the hoods... Firing up Ida and

analyzing the function RmGetList (this is one of the Restart Manager API function) i noticed

this interesting call stack:

NtQueryInformationFile(hFile, ..., FileProcessIdsUsingFileInformation)

RMRegisteredFile::AffectedPids()

RmFileFactory::UniqueAffectedPids()

CRestartManager::UpdateInternalData()

CRestartManager::GetAffectedApplications()

RmGetList()

So the Restart Manager uses the function NtQueryInformationFile from ntdll with the

FILE_INFORMATION_CLASS set to FileProcessIdsUsingFileInformation (47) in order to

retrieve a list of PIDs that are using the file specified. Below the function definition:

https://splintercod3.blogspot.com/p/a-very-simple-and-alternative-pid-finder.html
https://docs.microsoft.com/en-us/windows/win32/rstmgr/about-restart-manager
https://docs.microsoft.com/en-us/windows/win32/api/restartmanager/nf-restartmanager-rmgetlist
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/ntifs/nf-ntifs-ntqueryinformationfile
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/ne-wdm-_file_information_class
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/ne-wdm-_file_information_class

2/3

Note that this does not apply only on files opened in exclusive access, but for any process

using the specified file.

Knowing i could leverage this undocumented functionality in NtQueryInformationFile, a

light bulb came into my mind: what if i can use this undocumented functionality and build an

alternative PID finder? Ideally it shouldn't use the already known functions

CreateToolhelp32Snapshot or NtQuerySystemInformation, otherwise what's the point ?_?

Well, that was a hella good idea. But let's proceed step by step...

Why do you need to find a PID (process id) of a process? Basically it's the main parameter

needed for the OpenProcess function in order to get a handle for a process and then do juicy

stuff.

From an attacker perspective, the most common scenarios in which you would need to

automatically retrieve the pid of a process starting from its name are:

When you want to steal a SYSTEM token from a privileged process:

If you want SeTcbPrivilege you want to target winlogon.exe;

If you want SeCreateTokenPrivilege you want to target csrss.exe or lsass.exe;

When you want to perform a process injection, explorer.exe tells you something? :D

When you want to dump lsass.exe memory for interesting loot.

https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEgpa2aKeO1e_0uhSv0_CiTVO4uf6kOanCoFnz0Ddp9uw_EDJI-Z_eW4GOt_BVWuk0aJ4X-gwdtjlQ9zV5uJCv_kJ2Zx6Neaz1um9HX-MoZhC1_0FCO6HylzphnHG8lTjGJRD68emjbZQMjySMxi9-_Oi-ZIEx89ODMS9YmNxq1b1lbjwkPZMcjDSV3_/s950/index.png
https://docs.microsoft.com/en-us/windows/win32/api/tlhelp32/nf-tlhelp32-createtoolhelp32snapshot
https://docs.microsoft.com/en-us/windows/win32/api/winternl/nf-winternl-ntquerysysteminformation
https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-openprocess

3/3

By poking around in Process Explorer and running random processes i have identified the

following interesting correlation between process name and opened file handle:

notepad.exe -> C:\Windows\System32\en-US\notepad.exe.mui

cmd.exe -> C:\Windows\System32\en-US\cmd.exe.mui

mspaint.exe -> C:\Windows\System32\en-US\mspaint.exe.mui

So we have a way to create a correlation between the process name we want to find a PID for

and what is required for the NtQueryInformationFile call (an opened file handle).

But then i realized that most probably the usage of the Image Path of the process would be

much more reliable than using .mui files.

Unfortunately, from Process Explorer, i couldn't see any opened handles to the image path of

the process itself.

However the NtQueryInformationFile call succedeed anyway in retrieving the right PID of

the process!

I guess this occurs because NtQueryInformationFile does not consider a "file use" only a

process with a opened file handle, but even if the process has a mapped image/module from

the requested path. (Bonus: try to use this function on C:\Windows\System32\ntdll.dll and

enjoy the list of all PIDs running on the system ;D)

I have written a very simple POC in order to verify if this method could work at least with the

most useful and interesting process names, below the results:

You can find the POC code here -->

https://gist.github.com/antonioCoco/9db236d6089b4b492746f7de31b21d9d

That's all folks :P

https://gist.github.com/antonioCoco/9db236d6089b4b492746f7de31b21d9d

