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Spoofing Call Stacks To Confuse EDRs
labs.withsecure.com/blog/spoofing-call-stacks-to-confuse-edrs

Call stacks are an understated yet often important source of telemetry for EDR products.

They can provide vital context to an event and be an extremely powerful tool in determining

false positives from true positives (especially for credential theft events such as handle access

to lsass). An example of this is that attackers will typically reside in-memory via injected

code. This unbacked, or floating memory, will show up in call stacks when making API calls

and appear highly anomalous.

There has been some public research on spoofing call stacks (most notably

https://github.com/mgeeky/ThreadStackSpoofer and

https://github.com/Cracked5pider/Ekko), however these seem largely focused on obscuring

the call stack for sleeping threads from AV/EDR detection (i.e. for the Cobalt Strike sleep

mask).  

This contrasts with actively tricking an EDR (or ETW provider) to record a fake call stack

from a kernel driver for a specific TTP, say opening a handle to lsass in preparation for

dumping credentials. This blog post will demonstrate a PoC technique that will enable

NtOpenProcess to be called with an arbitrary call stack (i.e. a genuine call stack spoofer).

Technical Walkthrough

The Windows kernel provides a number of callbacks for AV/EDR drivers to subscribe to in

order to receive notifications about system events. For example, this includes process

creation/deletion events (PsSetCreateProcessNotifyRoutineEx), thread creation/deletion

events (PsSetCreateThreadNotifyRoutine), and object access (ObRegisterCallbacks) etc.

Many of these callbacks run in the context of the thread that triggered the action. Hence,

when a kernel driver’s process notify routine is called, it is running in the context of the

process that triggered the callback (e.g. via calling CreateProcess) and interprets user mode

virtual addresses in the context of that user process. Furthermore, the callback will run

inline; the operating system is waiting on the callback to return before it can complete the

target action of say creating a process or new thread.

This is demonstrated in the contrived kernel call stack below (obtained from windbg via

kernel debugging). This shows a breakpoint set on a custom ObRegisterCallback routine (in

this case a process handle operation) which was triggered via Outflank’s dumpert tool:

https://labs.withsecure.com/blog/spoofing-call-stacks-to-confuse-edrs
https://github.com/mgeeky/ThreadStackSpoofer
https://github.com/Cracked5pider/Ekko
https://www.cobaltstrike.com/blog/sleep-mask-update-in-cobalt-strike-4-5/
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddk/nf-ntddk-pssetcreateprocessnotifyroutineex
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddk/nf-ntddk-pssetcreatethreadnotifyroutine
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nc-wdm-pob_pre_operation_callback
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/changing-contexts
https://github.com/outflanknl/Dumpert
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1: kd> k 
00 ffff9387`368011f0 fffff806`2e0a78cc     exampleAVDriver!ObjectCallback+0x50 
01 ffff9387`36801b70 fffff806`2e0a7a3a     nt!ObpCallPreOperationCallbacks+0x10c
02 ffff9387`36801bf0 fffff806`2e015e13     nt!ObpPreInterceptHandleCreate+0xaa 
03 ffff9387`36801c60 fffff806`2e086ca9     nt!ObpCreateHandle+0xce3 
04 ffff9387`36801e70 fffff806`2e09a60f     nt!ObOpenObjectByPointer+0x1b9 
05 ffff9387`368020f0 fffff806`2e0f27b3     nt!PsOpenProcess+0x3af 
06 ffff9387`36802480 fffff806`2de272b5     nt!NtOpenProcess+0x23 
07 ffff9387`368024c0 00007ff7`ef821d42     nt!KiSystemServiceCopyEnd+0x25 
08 0000000f`f4aff1e8 00007ff7`ef8219b2     Outflank_Dumpert+0x1d42 
09 0000000f`f4aff1f0 00007ff7`ef821fb0     Outflank_Dumpert+0x19b2 
0a 0000000f`f4aff890 00007ffd`6c317034     Outflank_Dumpert+0x1fb0 
0b 0000000f`f4aff8d0 00007ffd`6d862651     KERNEL32!BaseThreadInitThunk+0x14 
0c 0000000f`f4aff900 00000000`00000000     ntdll!RtlUserThreadStart+0x21  

 

From this callback, an AV/EDR driver can inspect the object access request and take direct

action, such as stripping permission bits from the requested handle if required.  Similarly,

from a process or thread callback perspective, an AV/EDR can inspect the new

process/thread and take preventative action such as blocking it from executing based on

some kind of detection logic/heuristic (does the thread point to sketchy memory? etc.).

Additionally, to support the argument of just how useful call stack collection can be, the

example above clearly demonstrates the use of direct system calls as there is no ntdll listed in

the call stack prior to nt!KiSystemServiceCopyEnd.

As a word of caution, the ObjectCallback is not actually guaranteed to run in the context of

the thread that triggered the action; it runs in what is called an arbitrary thread context

(hence the current context may not be the actual process which triggered the callback).

However, it appears you can reliably assume this is the case the majority of the time.

What should be clear from the example above is that one action an AV/EDR can perform

inline from a kernel callback is the act of walking the call stack. In fact, this is exactly what

SysMon does for process access events (Event id 10: Process access).

In the screenshot below we can see a Process access event generated by SysMon, which

shows svchost obtaining a handle to lsass:

https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nc-wdm-pob_pre_operation_callback
https://www.osr.com/blog/2014/09/08/arbitrary-thread-context-article-video/
https://rootdse.org/posts/understanding-sysmon-events/
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Figure 1: An example SysMon event for process access where lsass is the target image.

We can see the event contains a ‘CallTrace’ field; this shows the user mode call stack and

essentially reveals the chain of events within the process that led to the handle request (albeit

without full symbol resolution). This particular event was generated minutes after installing

SysMon and occurred at a regular frequency afterwards. Given the call stack does not contain

any anomalous memory regions it should be clear this is demonstrably a false positive.

If we load up the SysMon driver (SysmonDrv.sys) into IDA we can determine how exactly

SysMon collects the call stack. The key function to look for is RtlWalkFrameChain and cross

reference from there. SysMonDrv registers a callback (ObjectHandleCallback below) for

process handle operations and on each invocation will call RtlWalkFrameChain to collect the

user mode call stack (via the StackWalkWrapper function):

https://doxygen.reactos.org/d8/d2f/unwind_8c.html#a703c006cc016ffffe4d2982c373711d4
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Figure 2: The decompilation generated by IDA for SysMonDrv's object call back.

Note that SysMon uses a flag of 1 (‘mov r8d, 1’) in the call to RtlWalkFrameChain to indicate

it wants to collect a user mode call stack only.

RtlWalkFrameChain is exported by ntoskrnl and (at a very high level) works as follows:

Calls RtlCaptureContext to capture a ContextRecord / CONTEXT structure of the

current thread

Calls RtlpxVirtualUnwind which will take the CONTEXT structure and start unwinding

the stack (based on the current state of execution recorded in the CONTEXT structure

e.g. via Rip/Rsp etc.)

An example of the implementation of RtlVirtualUnwind can be found here:

https://github.com/hzqst/unicorn_pe/blob/master/unicorn_pe/except.cpp#L773 and here:

https://doxygen.reactos.org/d8/d2f/unwind_8c.html#a03c91b6c437066272ebc2c2fff051a4

c.

https://docs.microsoft.com/en-us/windows/win32/api/winnt/nf-winnt-rtlcapturecontext
https://docs.microsoft.com/en-us/windows/win32/api/winnt/ns-winnt-context
https://github.com/hzqst/unicorn_pe/blob/master/unicorn_pe/except.cpp#L773
https://doxygen.reactos.org/d8/d2f/unwind_8c.html#a03c91b6c437066272ebc2c2fff051a4c
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Furthermore, ETW can also be configured to collect a stack trace

(see: https://github.com/microsoft/krabsetw/pull/191). This again can be very useful for

determining anomalous activity for a number of providers (For example, when applied to the

Microsoft TI feed or looking for unbacked wininet calls). As a note, ETW collects the call

stack in a slightly different way to the typical inline kernel callback approach demonstrated

above. It queues an APC to the target thread first and then calls RtlWalkFrameChain. This is

probably due to the fact that some ETW providers execute in an arbitrary thread context.

A quick look at the implementation of RtlVirtualUnwind reveals the (rather complicated

looking) parsing of X64 unwind codes. Therefore, in order to understand how the call stack is

walked via RtlVirtualUnwind, it is first necessary to understand a little bit about how code

generation/execution works on X64. A full overview is beyond the scope of this blog post, but

this excellent CodeMachine blog post contains everything that is needed to fully understand

the techniques used in this blog post:

https://codemachine.com/articles/x64_deep_dive.html.

As a brief recap, the CPU has no concept of a function, rather it is a higher level language

abstraction. In x86, functions are implemented at the CPU level via using the frame pointer

register (Ebp), which can be used as a reference to access local variables and arguments

passed via the stack. Through following this chain of Ebp pointers (or function frames) it is

possible to find the next stack frame up and hence walk the x86 stack.

In X64, things are more complicated as Rbp is no longer used as a frame pointer and so, alas,

the method used above will not work. The key difference to understand is that X64

executables contain a new section called “.pdata”. This section is essentially a database

containing every function in the executable and instructions (known as UNWIND_CODEs)

as to how to “unwind” a given function in the event of an exception. “Unwind” here

essentially means to reverse any operation it performed in its function prologue which

modified the stack in some way (e.g. made space for local variables, pushed any non-volatile

registers to the stack etc.). On X64, once a function has finished its prologue (and hence stack

modifications), it does not modify the stack pointer until its epilogue reverses them, hence

Rsp is static throughout the function body.

Some typical UNWIND_CODEs are:

ALLOC_SMALL/LARGE (allocates a small/large amount of memory for local args e.g.

sub rsp, 80h)

PUSH_NONVOL (pushes a non-volatile register to the stack e.g. push rdi)

In windbg, the '.fnent' command will parse this information for a specified function and

display its unwind info, as demonstrated for kernelbase!OpenProcess below:

https://github.com/microsoft/krabsetw/pull/191
https://codemachine.com/articles/x64_deep_dive.html
https://docs.microsoft.com/en-us/cpp/build/exception-handling-x64?view=msvc-170


6/15

0:000> .fnent kernelbase!OpenProcess 
Debugger function entry 000001e2`92241720 for: 
(00007ff8`7a3bc0f0)   KERNELBASE!OpenProcess   |  (00007ff8`7a3bc170)   
KERNELBASE!SetWaitableTimer 
Exact matches: 
BeginAddress      = 00000000`0002c0f0 
EndAddress        = 00000000`0002c160 
UnwindInfoAddress = 00000000`00266838 

Unwind info at 00007ff8`7a5f6838, 6 bytes 
 version 1, flags 0, prolog 7, codes 1 
 00: offs 7, unwind op 2, op info c UWOP_ALLOC_SMALL. 

This shows that OpenProcess only has one unwind code, which is that it allocates a small

area of memory on the stack. The total size of ‘UWOP_ALLOC_SMALL’ is calculated by

multiplying the op info value by 8 and adding 8 (0xc * 8 + 8 =0x68). This can be confirmed

by disassembling the first few bytes of kernelbase!OpenProcess (sub rsp, 68h):

0:000> uf kernelbase!OpenProcess 
KERNELBASE!OpenProcess: 
00007ff8`7a3bc0f0 4c8bdc          mov     r11,rsp 
00007ff8`7a3bc0f3 4883ec68        sub     rsp,68h 

A documented list of all the available UNWIND_CODES (and how to parse them) can be

found here: https://docs.microsoft.com/en-us/cpp/build/exception-handling-x64?

view=msvc-170

In order to walk the stack, windbg will calculate the total stack size for each function found

by adding up the size of:

any local variables

any stack based parameters

the return address (8 bytes)

homing space

stack space taken up by non-volatile registers

If we take a call to OpenProcess as an example:

https://docs.microsoft.com/en-us/cpp/build/exception-handling-x64?view=msvc-170
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0:000> knf 
#   Memory  Child-SP          RetAddr               Call Site 
00           000000df`7d8fef88 00007ffd`b1bdc13e     ntdll!NtOpenProcess 
01         8 000000df`7d8fef90 00007ff7`f10c087d     KERNELBASE!OpenProcess+0x4e
02        70 000000df`7d8ff000 00007ff7`f10c24b9     VulcanRaven!main+0x5d 
[C:\Users\wb\source\repos\VulcanRaven\VulcanRaven\VulcanRaven.cpp @ 641]  
03       9e0 000000df`7d8ff9e0 00007ff7`f10c239e     VulcanRaven!invoke_main+0x39 
[d:\a01\_work\43\s\src\vctools\crt\vcstartup\src\startup\exe_common.inl @ 79]  
04        50 000000df`7d8ffa30 00007ff7`f10c225e     
VulcanRaven!__scrt_common_main_seh+0x12e 
[d:\a01\_work\43\s\src\vctools\crt\vcstartup\src\startup\exe_common.inl @ 288]  
05        70 000000df`7d8ffaa0 00007ff7`f10c254e     
VulcanRaven!__scrt_common_main+0xe 
[d:\a01\_work\43\s\src\vctools\crt\vcstartup\src\startup\exe_common.inl @ 331]  
06        30 000000df`7d8ffad0 00007ffd`b2237034     VulcanRaven!mainCRTStartup+0xe 
[d:\a01\_work\43\s\src\vctools\crt\vcstartup\src\startup\exe_main.cpp @ 17]  
07        30 000000df`7d8ffb00 00007ffd`b3e82651     
KERNEL32!BaseThreadInitThunk+0x14 
08        30 000000df`7d8ffb30 00000000`00000000     ntdll!RtlUserThreadStart+0x21 

The top entry, ntdll!NtOpenProcess (#00), is the current stack frame. The Child-SP value of

000000df`7d8fef88 is the value of Rsp after NtOpenProcess has finished its function

prologue (i.e. the value of the stack pointer after any stack modifications NtOpenProcess

needs to make have been performed).  The value of 8 in the ‘Memory’ column in the row

below the current frame is the total stack size used by NtOpenProcess. Therefore, in order to

calculate the Child-SP of the next frame, we can add the total stack size of the current frame

(8) to the current Child-SP:

0:000> ? 000000df`7d8fef88 + 8 
Evaluate expression: 959884291984 = 000000df`7d8fef90 

Note that NtOpenProcess has no unwind op codes (it doesn't modify the stack) so the next

Child-SP is simply found by skipping the return address pushed by the previous caller

(KERNELBASE!OpenProcess). This is why its total stack size is listed as 8 bytes (e.g. the

return address only).

This new Child-SP (000000df`7d8fef90) is the value of Rsp after

KERNELBASE!OpenProcess has finished its function prologue. When

KERNELBASE!OpenProcess calls ntdll!NtOpenProcess it will push its ret address on to the

stack; therefore this return address will be the next value on the stack immediately after

where its Child-SP points, as shown by Child-SP 01 in Figure 3.

This process can be repeated again for the next frame. Kernelbase!OpenProcess has a Child-

SP of 000000df`7d8fef90 and its total stack utilisation is 0x70 bytes. Once again if we add

them together we can get the next Child-SP for VulcanRaven!main:

0:000> ? 000000df`7d8fef90 + 70 
Evaluate expression: 959884292096 = 000000df`7d8ff000 
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This process is repeated until the debugger has completely walked the stack. Therefore, at a

high level the stack walking process looks like this:

Figure 3: A diagram showing the stack walking process for X64.

The key take away relevant to this blog post is that by knowing the total stack size of a

function, it is possible (without symbols) to follow this chain of child stack pointers and walk

a call stack. This process will be mimicked in reverse when it comes to spoofing call stacks.

Having discussed the usefulness of call stack telemetry and given a brief overview of how

unwinding call stacks works on x64, we can now pivot to the question this blog post

addresses: is it possible to spoof a call stack so that when this collection takes place inline

(say from within a kernel driver callback routine) a fake call stack is recorded?

Approach

 

The PoC in this blog post takes the following approach:
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1. Identify a target call stack to spoof. For this SysMon was used and an arbitrary entry for

event type 10 that opened a handle to lsass was chosen e.g. the example below:

CallTrace: 
C:\Windows\SYSTEM32\ntdll.dll + 9d204 (ntdll!NtOpenProcess) 
C:\Windows\System32\KERNELBASE.dll + 32ea6  (KERNELBASE!OpenProcess) 
C:\Windows\System32\lsm.dll + e959 
C:\Windows\System32\RPCRT4.dll + 79633 
C:\Windows\System32\RPCRT4.dll + 13711 
C:\Windows\System32\RPCRT4.dll + dd77b 
C:\Windows\System32\RPCRT4.dll + 5d2ac 
C:\Windows\System32\RPCRT4.dll + 5a408 
C:\Windows\System32\RPCRT4.dll + 3a266 
C:\Windows\System32\RPCRT4.dll + 39bb8 
C:\Windows\System32\RPCRT4.dll + 48a0f 
C:\Windows\System32\RPCRT4.dll + 47e18 
C:\Windows\System32\RPCRT4.dll + 47401 
C:\Windows\System32\RPCRT4.dll + 46e6e 
C:\Windows\System32\RPCRT4.dll + 4b542 
C:\Windows\SYSTEM32\ntdll.dll + 20330 
C:\Windows\SYSTEM32\ntdll.dll + 52f26 
C:\Windows\System32\KERNEL32.DLL + 17034 
C:\Windows\SYSTEM32\ntdll.dll + 52651

2. For each return address in the target call stack above, parse its unwind codes and

calculate the total stack space required so we can locate the next childSP frame.

 

3. Create a suspended thread and modify the CONTEXT structure so that the stack/rsp

fits the exact outline of the target call stack to spoof (without any of the actual data

being there). Hence we are initialising the thread’s state to “fit the profile” of another

thread by pushing fake return addresses and subtracting correct child-SP offsets (e.g.

stack unwinding in reverse). Care needs to be taken when handling certain unwind

codes (UWOP_SET_FPREG) as this will reset rsp == rbp.

 

4. Modify the CONTEXT structure so that Rip points to our target function

(ntdll!NtOpenProcess in this case) and set the appropriate arguments required by the

x64 calling convention (e.g. via setting Rcx/Rdx/R8/R9).

 

5. Resume the thread and handle the inevitable error once the sys call returns (as it is

returning up a fake call stack) via a vectored exception handler. From this exception

handler, we can re-direct the thread to RtlExitUserThread (via re-setting Rip) and let it

gracefully exit.

https://docs.microsoft.com/en-us/cpp/build/x64-calling-convention?view=msvc-170
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For 5), this approach is an obvious limitation; a better approach would be to use VEH

exception handling with either hardware or software breakpoints in a similar manner to this

patchless AMSI bypass: https://gist.github.com/CCob/fe3b63d80890fafeca982f76c8a3efdf.

With this approach, we could place a breakpoint on the ret immediately after the

NtOpenProcess sys call (00007ff8`7ca6d204 below) has returned:

0:000> uf ntdll!NtOpenProcess 
ntdll!NtOpenProcess: 
00007ff8`7ca6d1f0 4c8bd1          mov     r10,rcx 
00007ff8`7ca6d1f3 b826000000      mov     eax,26h 
00007ff8`7ca6d1f8 f604250803fe7f01 test    byte ptr [SharedUserData+0x308 
(00000000`7ffe0308)],1 
00007ff8`7ca6d200 7503            jne     ntdll!NtOpenProcess+0x15 
(00007ff8`7ca6d205)  Branch 
ntdll!NtOpenProcess+0x12: 
00007ff8`7ca6d202 0f05            syscall 
00007ff8`7ca6d204 c3              ret 

Once a breakpoint exception is generated (and before the thread returns and crashes) we

could handle the error in the same way as discussed previously. Additionally, recovering the

state of the fake thread and being able to re-use it would be an improvement and stop the

need to repeatedly create “sacrificial threads”.

Furthermore, this approach could also potentially be applied to the sleeping obfuscation

problem; a fake thread with a legitimate call stack could be initialised to call

ntdll!NtDelayExecution (or WaitForSingleObject etc.) and VEH exceptions used to re-direct

flow to a main beacon function on return of the sleep duration.

PoC || GTFO

 

The PoC code can be found here: https://github.com/countercept/CallStackSpoofer

The PoC comes with three example call stacks (wmi/rpc/svchost) to mimic, all of which were

taken arbitrarily from SysMon logs via observing process handle access to lsass. These call

stack profiles can be selected via the '–wmi', '--rpc', and '–svchost' flags, as demonstrated

below:

 

https://gist.github.com/CCob/fe3b63d80890fafeca982f76c8a3efdf
https://github.com/countercept/CallStackSpoofer
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Figure 4: A screenshot showing VulcanRaven grabbing a handle to lsass and spoofing the call

stack to look like RPC activity.

 

The screenshot above demonstrates a fake call stack being recorded by SysMon (contrast this

to the expected use of OpenProcess which would have a call stack of: VulcanRaven.exe ->

kernelbase!OpenProcess -> ntdll!NtOpenProcess). Just to stress, the examples in this PoC

were chosen to mimic events found via SysMon but the call stack does not have to make

sense and can be anything, as demonstrated below:
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Figure 5: A screenshot from WinDbg showing a completely nonsensical call stack being

spoofed when calling NtOpenProcess.

The most obvious example of why this technique would be of interest to an attacker is that

most remote access trojans (beacon etc.) still tend to operate off floating / unbacked memory.

Thus, when an attacker injects mimikatz directly into memory, the call stack for the

subsequent handle access from this injected code will look highly anomalous.

As an example, a SysMon event is shown below for unbacked memory calling OpenProcess:
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Figure 6: A SysMon event showing handle access to lsass originating from unbacked

memory.

This was generated via using a modified version of Stephen Fewer’s ReflectiveDLLInjection

https://github.com/stephenfewer/ReflectiveDLLInjection codebase.

In this example, a reflective DLL has been injected into cmd.exe and subsequently obtained a

handle to lsass with PROCESS_ALL_ACCESS access. As the call originated from unbacked

memory, SysMon records the last entry in the call stack as “UNKNOWN” (e.g. the last return

address in the stack walk belonged to floating/unbacked code and not a legitimately loaded

module) and hence is obviously suspicious.

However, if we modify the VulcanRaven PoC above to run as a reflective DLL, we generate

the following event:

https://github.com/stephenfewer/ReflectiveDLLInjection
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Figure 7: A screenshot showing Vulcan Raven modified to run as reflective DLL. Even though

it is running from unbacked memory, the call stack for handle access to lsass is still spoofed

to look legimate.

The call stack (“CallTrace”) is spoofed to an arbitrary value pulled from SysMon as expected;

it is impossible to tell from this call stack that the call to NtOpenProcess/OpenProcess

actually originated from code running from unbacked memory, and the thread on the surface

looks genuine (although the cmd.exe is contrived and obviously suspicious). Also note the

different GrantedAccess to Figure 1, which in this case is

PROCESS_ALL_ACCESS/0x1FFFFF.

It is clear though that an attacker could profile their chosen call stack to blend in with their

chosen injected process (wmi, procexp, svchost etc. all regularly grab handles to lsass).
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