
1/9

Dima Van de Wouw December 9, 2021

A phishing document signed by Microsoft – part 1
outflank.nl/blog/2021/12/09/a-phishing-document-signed-by-microsoft

This blog post is part of series of two posts that describe weaknesses in Microsoft Excel that

could be leveraged to create malicious phishing documents signed by Microsoft that load

arbitrary code.

These weaknesses have been addressed by Microsoft in the following patch: CVE-2021-

28449. This patch means that the methods described in this post are no longer applicable to

an up-to-date and securely configured MS Office install. However, we will uncover a largely

unexplored attack surface of MS Office for further offensive research and will demonstrate

practical tradecraft for exploitation.

In this blog post (part 1), we will discuss the following:

The Microsoft Analysis ToolPak Excel and vulnerabilities in XLAM add-ins which are

distributed as part of this.

Practical offensive MS Office tradecraft which is useful for weaponizing signed add-ins

which contain vulnerabilities, such as transposing third party signed macros to other

documents.

Our analysis of Microsoft’s mitigations applied by CVE-2021-28449.

We will update this post with a reference to part 2 once it is ready.

An MS Office installation comes with signed Microsoft Analysis ToolPak Excel add-ins

(.XLAM file type) which are vulnerable to multiple code injections. An attacker can embed

malicious code without invalidating the signature for use in phishing scenarios. These

specific XLAM documents are signed by Microsoft.

The resulting exploit/maldoc supports roughly all versions of Office (x86+x64) for any

Windows version against (un)privileged users, without any prior knowledge of the target

environment. We have seen various situations at our clients where the specific Microsoft

certificate is added as a Trusted Publisher (meaning code execution without a popup after

opening the maldoc). In other situations a user will get a popup showing a legit Microsoft

signature. Ideal for phishing!

Research background

At Outflank, we recognise that initial access using maldocs is getting harder due to increased

effectiveness of EDR/antimalware products and security hardening options for MS Office.

Hence, we continuously explore new vectors for attacking this surface.

https://outflank.nl/blog/2021/12/09/a-phishing-document-signed-by-microsoft/
https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-28449
https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-28449

2/9

During one of my research nights, I started to look in the MS Office installation directory in

search of example documents to further understand the Office Open XML (OpenXML)

format and its usage. After strolling through the directory C:\program

files\Microsoft Office\ for hours and hours, I found an interesting file that was

doing something weird.

Introduction to Microsoft’s Analysis Toolpak add-in XLAMs

The Microsoft Office installation includes a component named “Microsoft’s Analysis ToolPak

add-in”. This component is implemented via Excel Add-ins (.XLAM), typically

named ATPVBAEN.XLAM and located in the office installation directory. In the same

directory, there is an XLL called analys32.xll which is loaded by this XLAM. An XLL is a DLL

based Excel add-in.

The folders and files structure are the same for all versions and look like this:

The Excel macro enabled add-in file (XLAM) file format is relatively similar to a regular

macro enabled Excel file (XLSM). An XLAM file usually contains specific extensions to Excel

so new functionality and functions can be used in a workbook. Our ATPVBAEN.XLAM target

implements this via VBA code which is signed by Microsoft. However, signing the VBA code

does not imply integrity control over the document contents or the resources it loads…

Malicious code execution through RegisterXLL

So, as a first attempt I copied ATPVBAEN.XLAM to my desktop together with a malicious

XLL which was renamed to analys32.xll. The signed XLAM indeed loaded the unsigned

malicious XLL and I had the feeling that this could get interesting.

https://docs.microsoft.com/en-us/office/client-developer/excel/getting-started-with-the-excel-xll-sdk
https://outflank.nl/blog/wp-content/uploads/2021/12/01_folder.png

3/9

Normally, the signed VBA code in ATPVBAEN.XLAM is used to load an XLL in the same

directory via a call to RegisterXLL. The exact path of this XLL is provided inside an Excel cell

in the XLAM file. Cells in a worksheet are not signed or validated and can be manipulated by

an attacker. In addition, there is no integrity check upon loading the XLL. Also, no warning is

given, even if the XLL is unsigned or loaded from a remote location.

We managed to weaponize this into a working phishing document loading an XLL over

WebDAV. Let’s explore why this happened.

No integrity checks on loading unsigned code from a signed context
using RegisterXLL

ATPVBAEN.XLAM loads ANALYS32.XLL and uses its exported functions to provide

functionality to the user. The XLAM loads the XLL using the following series of functions

which are analysable using the olevba tool. Note that an XLL is essentially just a DLL with

the function xlAutoOpen exported. The highlighted variables and functions are part of the

vulnerable code:

> olevba ATPVBAEN.XLAM
olevba 0.55.1 on Python 3.7.3 - http://decalage.info/python/oletools
===
VBA MACRO VBA Functions and Subs.bas
in file: xl/vbaProject.bin - OLE stream: 'VBA/VBA Functions and Subs'
-
' ANALYSIS TOOLPAK - Excel AddIn
' The following function declarations provide interface between VBA and ATP XLL.

' These variables point to the corresponding cell in the Loc Table sheet.
Const XLLNameCell = "B8"
Const MacDirSepCell = "B3"
Const WinDirSepCell = "B4"
Const LibPathWinCell = "B10"
Const LibPathMacCell = "B11"

Dim DirSep As String
Dim LibPath As String
Dim AnalysisPath As String

The name of the XLL is saved in cell B4 and the path in cell B10. Which looks as follows, if

you unhide the worksheet:

https://docs.microsoft.com/en-us/office/vba/api/excel.application.registerxll

4/9

The auto_open() function is called when the file is opened and the macro’s are

enabled/trusted.

' Setup & Registering functions

Sub auto_open()
 Application.EnableCancelKey = xlDisabled
 SetupFunctionIDs
 PickPlatform
 VerifyOpen
 RegisterFunctionIDs
End Sub

First, the PickPlatform function is called to set the variables. LibPath , is set here

to LibPathWinCell ’s value (which is under the attacker’s control) in case the workbook is

opened on Windows.

Private Sub PickPlatform()
 Dim Platform

 ThisWorkbook.Sheets("REG").Activate
 Range("C3").Select
 Platform = Application.ExecuteExcel4Macro("LEFT(GET.WORKSPACE(1),3)")
 If (Platform = "Mac") Then
 DirSep = ThisWorkbook.Sheets("Loc Table").Range(MacDirSepCell).Value
 LibPath = ThisWorkbook.Sheets("Loc Table").Range(LibPathMacCell).Value
 Else
 DirSep = ThisWorkbook.Sheets("Loc Table").Range(WinDirSepCell).Value
 LibPath = ThisWorkbook.Sheets("Loc Table").Range(LibPathWinCell).Value
 End If
End Sub

https://outflank.nl/blog/wp-content/uploads/2021/12/02_ExcelCells.png

5/9

The function VerifyOpen will try looking for the XLL, as named in XLLNameCell = "B8" ,

then start looking in the entire PATH of the system and finally look in the path as defined

by LibPath . Note, all (red / orange) highlighted variables are under the attacker’s control

and vulnerable. We are going to focus on attacking the red highlighted code.

Private Sub VerifyOpen()
 XLLName = ThisWorkbook.Sheets("Loc Table").Range(XLLNameCell).Value

 theArray = Application.RegisteredFunctions
 If Not (IsNull(theArray)) Then
 For i = LBound(theArray) To UBound(theArray)
 If (InStr(theArray(i, 1), XLLName)) Then
 Exit Sub
 End If
 Next i
 End If

 Quote = String(1, 34)
 ThisWorkbook.Sheets("REG").Activate
 WorkbookName = "[" & ThisWorkbook.Name & "]" & Sheet1.Name
 AnalysisPath = ThisWorkbook.Path

 AnalysisPath = AnalysisPath & DirSep
 XLLFound = Application.RegisterXLL(AnalysisPath & XLLName)
 If (XLLFound) Then
 Exit Sub
 End If

 AnalysisPath = ""
 XLLFound = Application.RegisterXLL(AnalysisPath & XLLName)
 If (XLLFound) Then
 Exit Sub
 End If

 AnalysisPath = LibPath
 XLLFound = Application.RegisterXLL(AnalysisPath & XLLName)
 If (XLLFound) Then
 Exit Sub
 End If

 XLLNotFoundErr = ThisWorkbook.Sheets("Loc Table").Range("B12").Value
 MsgBox (XLLNotFoundErr)
 ThisWorkbook.Close (False)
End Sub

RegisterXLL will load any XLL without warning / user validation. Copying the XLAM to

another folder and adding a (malicious) XLL named ANALYS32.XLL in the same folder

allows for unsigned code execution from a signed context.

There are no integrity checks on loading additional (unsigned) resources from a user-

accepted (signed) context.

6/9

Practical weaponization and handling different MS Office installs

For full weaponization, an attacker needs to supply the correct XLL (32 vs 64 bit) as well as a

method to deliver multiple files, both the Excel file and the XLLs. How can we solve this?

Simple weaponization

The simplest version of this attack can be weaponized by an attacker once he can deliver

multiple files, an Excel file and the XLL payload. This can be achieved by multiple vectors,

e.g. offering multiple files for download and container formats such as .zip, .cab or .iso.

In the easiest form, the attacker would copy the ATPVBAEN.XLAM from the Office directory

and serve a malicious XLL, named ANALYS32.XLL next to it. The XLAM can be renamed

according to the phishing scenario. By changing the XLLName Cell in the XLAM, it is

possible to change the XLL name to an arbitrary value as well.

MS Office x86 vs x64 bitness – Referencing the correct x86 and x64 XLLs (PoC

1)

For a full weaponization, an attacker would require knowledge on whether 64-bit or 32-bit

versions of MS Office are used at a victim. This is required because an XLL payload (DLL)

works for either x64 or x86.

It is possible to obtain the Office bitness using =INFO("OSVERSION") since the function is

executed when the worksheet is opened, before the VBA Macro code is executed. For

clarification, the resulting version string includes the version of Windows and the bitness of

Office, ex; “Windows (32-bit) NT 10.00”. An attacker can provide both 32- and 64-bit XLLs

and use Excel formulas to load the correct XLL version.

The final bundle to be delivered to the target would contain:

PoC-1-local.zip

 ├ Loader.xlam

 ├ demo64.dat

 ├ demo32.dat

A 64-bit XLL is renamed to demo64.dat and is loaded from the same folder. It can be served

as zip, iso, cab, double download, etc.

Payload: Changed XLLName cell B8 to

= "demo" & IF(ISERROR(SEARCH("64";INFO("OSVERSION"))); "32"; "64") &
".dat"

Loading the XLL via webdav

https://docs.microsoft.com/en-us/office/vba/api/excel.application.operatingsystem

7/9

With various Office trickery, we also created a version where the XLAM/XLSM could be sent

directly via email and would load the XLL via WebDAV. Details of this are beyond the scope

of this blog, but there are quite a few tricks to enable the WebDAV client on a target’s

machine via MS Office (but that is for part 2 of this series).

Signed macro transposing to different file formats

By copying the vbaproject.bin , signed VBA code can be copied/transposed into other file

formats and extensions (e.g. from XLAM to XLSM to XLS).

Similarly, changing the file extension from XLAM to XLSM can be performed by changing

one word inside the document in [Content_Types].xml from ‘ addin ’ to ‘ sheet ’. The

Save As menu option can be used to convert the XLSM (Open XML) to XLS (compound file).

Signature details

Some noteworthy aspects of the signature that is applied on the VBA code:

The VBA code in the XLAM files is signed by Microsoft using timestamp signing which

causes the certificate and signature to remain valid, even after certificate expiration. As

far as we know, timestamp signed documents for MS Office cannot be revoked.

The XLAMs located in the office installer are signed by CN = Microsoft Code

Signing PCA 2011 with varying validity start and end dates. It appears that Microsoft

uses a new certificate every half year, so there are multiple versions of this certificate in

use.

In various real-world implementations at our clients, we have seen the Microsoft Code

Signing PCA 2011 installed as a Trusted Publisher. Some online resources hint towards

adding this Microsoft root as a trusted publisher. This means code execution without a

popup after opening the maldoc.

In case an environment does not have the Microsoft certificate as trusted publisher,

then the user will be presented with a macro warning. The user can inspect the

signature details and will observe that this is a genuine Microsoft signed file.

8/9

Impact summary

An attacker can transpose the signed code into various other formats (e.g. XLS, XLSM) and

use it as a phishing vector.

In case a victim system has marked the Microsoft certificate as trusted publisher and the

attacker manages to target the correct certificate version a victim will get no notification and

attacker code is executed.

In case the certificate is not trusted, the user will get a notification and might enable the

macro as it is legitimately signed by Microsoft.

Scope: Windows & Mac?

Affected products: confirmed on all recent versions of Microsoft Excel (2013, 2016, 2019), for

both x86 and x64 architectures. We have found signed and

vulnerable ATPVBAEN.XLAM files dating back from 2009 while the file contains references

to “Copyright 1991,1993 Microsoft Corporation”, hinting this vulnerability could be present

for a very long time.

It is noteworthy to mention that the XLAM add-in that we found supports both paths for

Windows and for MacOS and launches the correct XLL payload accordingly. Although

MacOS is likely affected, it has not been explicitly tested by us. Theoretically, the sandbox

should mitigate (part of) the impact. Have fun exploring this yourself, previous applications

by other researchers of our MS Office research to the Mac world have had quite some impact.

Microsoft’s mitigation

https://outflank.nl/blog/wp-content/uploads/2021/12/04_XLAM_signature.png
https://objective-see.com/blog/blog_0x50.html

9/9

Microsoft acknowledged the vulnerability, assigned it https://msrc.microsoft.com/update-

guide/vulnerability/CVE-2021-28449 and patched it 5 months later.

Mitigation of this vulnerability was not trivial, due to other weaknesses in these files (see

future blog post 2 of this series). Mitigation of the weakness described in this post has been

implemented by signing the XLL and a new check that prevents ‘downgrading’ and loading of

an unsigned XLL. By default, downgrading is not allowed but this behavior can be

manipulated/influenced via the registry

value SkipSignatureCheckForUnsafeXLL as described in

https://support.microsoft.com/en-gb/office/add-ins-and-vba-macros-disabled-20e11f79-

6a41-4252-b54e-09a76cdf5101.

Disclosure timeline

Submitted to MSRC: 30 November 2020

Patch release: April 2021

Public disclosure: December 2021

Acknowledgement: Pieter Ceelen & Dima van de Wouw (Outflank)

Next blog: Other vulnerabilities and why the patch was more complex

The next blog post of this series will explain other vulnerabilities in the same code, show

alternative weaponization methods and explain why the patch for CVE-2021-28449 was a

complex one.

https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-28449
https://support.microsoft.com/en-gb/office/add-ins-and-vba-macros-disabled-20e11f79-6a41-4252-b54e-09a76cdf5101

