
1/3

August 6, 2008

Branchless Equivalents of Simple Functions
hbfs.wordpress.com/2008/08/05/branchless-equivalents-of-simple-functions

Modern processors are equipped with sophisticated branch
prediction algorithms (the Pentium family, for example, can
predict a vast array of patterns of jumps taken/not taken) but
if they, for some reason, mispredict the next jump, the
performance can take quite a hit. Branching to an
unexpected location means flushing the pipelines,
prefetching new instructions, etc, leading to a stall that lasts
for many tens of cycles. In order to avoid such dreadful stalls,
one can use a branchless equivalent, that is, a code
transformed to remove the if-then-elses and therefore jump
prediction uncertainties.

Let us start by a simple function, the integer abs() function. abs, for absolute value,
returns… well, the absolute value of its argument. A straightforward implementation of
abs() in the C programming language could be

1
2
3
4

inline unsigned int abs(int x)
{
return (x<0) ? -x : x;
}

Which is simple enough but contains a hidden if-then-else. As the argument, x, isn’t all that
likely to follow a pattern that the branch prediction unit can detect, the simple function
becomes potentially costly as the jump will be mispredicted quite often. How can we remove
the if-then-else, then?

Let us first introduce the sex() helper function—I still use the mnemonic sex to amuse
and chock friends and coworkers, but it comes from a Motorola 6809 instruction, sign
extend. The sex function will return an integer where the sign bit of its argument have been
copied in all the bits. For example, sex(321)=0, but sex(-3)=0xff...ff. This function is
ideal to generate a mask based on the sign of the argument. Of course, sex must be
branchless to be of any use to us. At the assembly language level the instruction exists on
most processors (it is one of the cbw (convert byte to word), cwd (convert word to double
word), etc, instructions on x86/AMD64), but what can we do at the C language level to force
the compiler to use the specialized instruction, or at least an efficient replacement? One can
use the right shift operator:

https://hbfs.wordpress.com/2008/08/05/branchless-equivalents-of-simple-functions/
http://en.wikipedia.org/wiki/6809

2/3

1
2
3
4

inline unsigned int sex(int x)
{
return x >> (CHAR_BIT*sizeof(int)-1);
}

where the (compile-time) safe expression (CHAR_BIT*sizeof(int)-1) evaluates to 15,
31, or 63 depending on the size of integers on the target computer (CHAR_BIT comes from
limits.h, and is worth 8, most of the times). However, this one-liner relies on the
underlying processor’s shift instruction which, in some case, can be dreadfully slow (a few
cycles for each bit shifted in micro-controllers) or very fast (one cycle simultaneously
executed with other instructions in bigger processors). One can also use an union, which
will compile to memory manipulation instructions, completely removing shifts from the
function:

1
2
3
4
5
6
7
8
9
10
11
12
13

inline int sex(int x)
{
union
{
long w;
struct { int lo, hi; }
} z = { .w=x };
return z.hi;
}

This will basically force the compiler to use the cbw family of instructions. Let us rewrite abs
using sex:

1
2
3
4

inline unsigned int abs(int x)
{
return (x ^ sex(x)) - sex(x);
}

Now, how does that work? If x is negative, sex(x) will be 0xff...ff, what is, filled with
ones. If x is not negative (zero or positive), sex(x) will be zero. So, if the number of
negative, it computes its two’s complement, otherwise leaves it unchanged. For example, if x
is negative, say -3 (no point in using large, weird, numbers here), sex(-3) is 0xff...ff
and -3 ^ 0xff...ff is the same as ~(-3), the bitwise negation of -3. Then, we subtract
-1 (which is the same as adding 1), computing ~(-3)+1 which is the correct two’s
complement. If on the other hand x is positive (or null), sex(x) evaluates to zero, and lo! (x
^ 0)-0 = x, which leaves the value of x unchanged!

3/3

Of course, when compiling the above abs function the compiler generates very little code,
especially when one uses the union version of sex. For example, on Intel x86, it could
compile down to

1
2
3

abs: cdq eax
xor eax,edx
sub eax,edx

assuming the value is already in (and returned by) eax. The cdq instruction sign-extends
eax into the edx register: it promotes a 32 bits value to a 64 bits value held in edx:eax.

Now, we can use sex for other if-then-else type function. Take min and max for example.
The pair is usually implemented as

1
2

inline int min(int a, int b) { return (a<b) ? a : b; }
inline int max(int a, int b) { return (a>b) ? a : b; }

Using sex, the pair becomes

1
2
3
4
5
6
7
8
9

inline int min(int a, int b)
{
return b + ((a-b) & sex(a-b));
}
inline int max(int a, int b)
{
return a + ((b-a) & ~sex(b-a));
}

which are now thoroughly branchless. Hurray!

Can you think of other common, simple functions, what would benefit from branch removal?

