
1/10

NTFS Alternate Streams: What, When, and How To
flexhex.com/docs/articles/alternate-streams.phtml

What Are Alternate Streams?

NTFS alternate streams, or named streams, or ADS (which stands for Alternate Data

Streams)
is a little known but very useful NTFS feature. Comparing with earlier file systems

like
FAT, NTFS significantly expands the customary concept of a file as a named portion of

data:

The unnamed stream is a mandatory element and is always present. If you are creating an

alternate atream and the file does not exist, the system will automatically create a zero
length

unnamed stream. If you are deleting the unnamed stream, the system considers it as
a

request to delete the whole file, and all the alternate streams will also be deleted.

The security descriptor and the file attributes belong to the file as a whole, not to
the

unnamed stream. For instance, no stream can be opened for writing if the read-only

attribute is set.

Note, however, that not all the attributes are file wide - some are stream based,
most notably

encrypted, compressed, and sparse.

When a program opens an NTFS file, it in fact opens the unnamed stream. In order to specify

an alternate stream, append the colon character and the stream name to the file name.
That

is, filename.ext specifies the unnamed stream of the file (or, depending
on the context, the

http://www.flexhex.com/docs/articles/alternate-streams.phtml
http://www.flexhex.com/docs/articles/sparse-files.phtml

2/10

whole file), and filename.ext:strname specifies
the alternate stream strname.

A directory also can have alternate streams, which can be accessed exactly the same way as

file streams. However a directory can't have an unnamed stream, and any attempt to access
it

(that is specifying the directory name without a stream name) will result the
Access denied

error.

Because the colon character is used also in drive specification, it may cause an ambiguity.
For

example, A:B may represent either a file B in the current directory
of the A: drive, or a

stream B of the file A. The system
always resolves this ambiguity as a drive and a name, so if

you want it to be interpreted the other
way, specify the current directory - in our example the

path should look as .\A:B.

System Support for Stream Operations

The good news is the Windows Explorer and the command-line copy command recognize

alternate
streams and correctly copy multi-stream files. The bad news is the system support

is limited to that.
The Windows Explorer does not allow any stream operations, and if you try

to specify a stream name in
the command line, you will get an error.

Other commands, for instance, echo, more, and type, can access alternate streams by using

redirectors < and >, which are stream-enabled. MSDN alternate stream example
uses those

commands with the redirectors for creating an alternate stream and inspecting its contents.

While these commands undoubtedly work, it is hard to imagine any practical use for this

technique.
Of course, you can always use FlexHEX
to perform any stream operation, however

a hex editor is probably not the best tool if all you want is
just to copy or rename a stream. So

we have developed a complete set of free command line tools for handling
alternate streams.

Just download and unpack them to your
Windows directory.

So When to Use Alternate Streams?

http://www.flexhex.com/download/

3/10

Certainly you should not use alternate streams for storing any critical information. Older file

systems are still widely used, and they don't support the advanced NTFS features. If you copy

an NTFS
file to a USB drive, flash card, CD-R/RW, or any other non-NTFS drive, the system

will copy the main
stream only and will ignore all the alternate streams. The same is true for

FTP/HTTP transfers. No warning is
given, and a user, relying on alternate streams, might get

a nasty surprise. So the Microsoft
reluctance to provide user tools for alternate streams is not

all that unfounded.

However alternate streams are still extremely useful. There is a lot of non-critical

information that
alternate streams is the most natural place to store to. Examples are

thumbnails for graphical files, parsing
information for program sources, spellcheck and

formatting data for documents, or any other data
that can easily be rebuilt. This way the file

can be stored on any file system, but keeping the file
on an NTFS drive will greatly increase

processing speed.

Programming Considerations

In order to improve readability, the code examples below don't include any error

processing.
You should add some error checks if you want to use this code in your program.

See the sources
in the download section for an example of error handling.

You can use the Win32 API function GetVolumeInformation to determine if the drive

supports
alternate streams.

char szVolName[MAX_PATH], szFSName[MAX_PATH];

DWORD dwSN, dwMaxLen, dwVolFlags;

::GetVolumeInformation("C:\\", szVolName, MAX_PATH, &dwSN,

 &dwMaxLen, &dwVolFlags, szFSName, MAX_PATH);

if (dwVolFlags & FILE_NAMED_STREAMS) {

 // File system supports named streams

}

else {

 // Named streams are not supported

}

You might prefer to play safe and check the file system name instead of the flag:

if (_stricmp(szFSName, "NTFS") == 0) // If NTFS

Creating/Opening a Stream

You can create or open a named stream exactly the same way you create or open an unnamed

stream:

HANDLE hFile = ::CreateFile("file.dat:alt", ...

4/10

Keep in mind that if the file does not exist, creating a named stream will also create a zero-

length unnamed stream.

Deleting a Stream

The Win32 API function DeleteFile fully supports alternate streams, so deleting a stream is

no more complex than deleting a file:

::DeleteFile("file.dat:alt");

As has been noted before, you can't delete the unnamed stream alone; deleting it also deletes

all the alternate streams.

Copying a Stream

You can use the Win32 API functions CopyFile/CopyFileEx to copy alternate streams.

However
these functions are used for copying files as well as streams so you might find the

result to be totally unexpected.
They perform stream-to-stream copying if the destination is a

named stream, but copying to an unnamed stream
is treated as a file operation. There are

two specific cases you should be aware of:

Unnamed stream to unnamed stream: treated as a file operation, that is all the named

streams
also get copied. If the target file exists, it is replaced.

Named stream to unnamed stream: also treated as a file operation, although only one

stream
gets copied. Existing target file gets deleted, so instead of replacing the unnamed

stream as
you might expect, the function replaces the whole target file with a new single-

stream file.

Copying a stream in a simple read/write loop gives a more predictable result and is

preferrable
in most cases:

HANDLE hInFile = ::CreateFile(szFromStream, GENERIC_READ, FILE_SHARE_READ, NULL,
 OPEN_EXISTING, FILE_FLAG_SEQUENTIAL_SCAN, NULL);

HANDLE hOutFile = ::CreateFile(szToStream, GENERIC_WRITE, FILE_SHARE_READ, NULL,
 CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL | FILE_FLAG_SEQUENTIAL_SCAN, NULL);

BYTE buf[64*1024];

DWORD dwBytesRead, dwBytesWritten;

do {

 ::ReadFile(hInFile, buf, sizeof(buf), &dwBytesRead, NULL);

 if (dwBytesRead) ::WriteFile(hOutFile, buf, dwBytesRead, &dwBytesWritten, NULL);

} while (dwBytesRead == sizeof(buf));

::CloseHandle(hInFile);

::CloseHandle(hOutFile);

5/10

The code above is the stream copy loop used in our CS command-line tool
(the error

processing code has been removed to improve readability). The complete sources
are

available in the download section.

Renaming a Stream

It seems there is no way - documented or undocumented - to rename a stream short of

directly
modifying the corresponding MFT entry.

Enumerating Streams: Windows Vista and later systems

Windows Vista introduced new functions for stream enumeration:
FindFirstStreamW /

FindFirstStreamTransactedW
and FindNextStreamW (note that only the Unicode

versions are available). Their usage is
fairly simple and is very similar to the well-known

FindFirstFile / FindFirstFile functions.

// Enumerate file's streams and print their sizes and names

WIN32_FIND_STREAM_DATA fsd;

HANDLE hFind = NULL;

try {

 hFind = ::FindFirstStreamW(L"teststreams.dat", FindStreamInfoStandard, &fsd, 0);

 if (hFind == INVALID_HANDLE_VALUE) throw ::GetLastError();

 for (;;) {

 printf("%-12I64u%S\n", fsd.StreamSize, fsd.cStreamName);

 if (!::FindNextStreamW(hFind, &fsd)) {

 DWORD dr = ::GetLastError();

 if (dr != ERROR_HANDLE_EOF) throw dr;

 break;

 }

 }

}

catch (DWORD err) {

 printf("Error! Windows error code: %u\n", err);

}

	

if (hFind != NULL) ::FindClose(hFind);

Enumerating Streams: pre-Vista systems

This is the tricky one. The only Win32 API function that can be used for enumerating streams

is BackupRead and using it would be a bad idea. The problem with BackupRead is that

you must actually read all the file streams in order to get their names. Even if the file contains

no
alternate streams, you will have to read the whole unnamed stream just to establish this

fact.
As a result any large enough file will bring your application to the screeching halt.

6/10

Fortunately there is an undocumented, but quite a reliable way of obtaining stream

information
using the Native API function NtQueryInformationFile (or

ZwQueryInformationFile).

// Open a file and obtain stream information

BYTE InfoBlock[64 * 1024]; // Buffer must be large enough

PFILE_STREAM_INFORMATION pStreamInfo = (PFILE_STREAM_INFORMATION)InfoBlock;

IO_STATUS_BLOCK ioStatus;

HANDLE hFile = ::CreateFile(szPath, 0, FILE_SHARE_READ | FILE_SHARE_WRITE,

 NULL, OPEN_EXISTING, 0, NULL);

NtQueryInformationFile(hFile, &ioStatus, InfoBlock,

 sizeof(InfoBlock), FileStreamInformation);

::CloseHandle(hFile);

A slightly more complex code is required if you want to open a directory. First, the program

must have the SE_BACKUP_NAME privilege; second, you must specify the

FILE_FLAG_BACKUP_SEMANTICS
flag when calling CreateFile; and third, you must

keep in mind the fact, that unlike files,
a directory may have no streams at all, and so the

program should recognize the situation when no stream
info is returned.

// Open a directory and obtain stream information

// Obtain backup privilege in case we don't have it

HANDLE hToken;

TOKEN_PRIVILEGES tp;

::OpenProcessToken(::GetCurrentProcess(), TOKEN_ADJUST_PRIVILEGES, &hToken);

::LookupPrivilegeValue(NULL, SE_BACKUP_NAME, &tp.Privileges[0].Luid);

tp.PrivilegeCount = 1;

tp.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED;

::AdjustTokenPrivileges(hToken, FALSE, &tp, sizeof(TOKEN_PRIVILEGES), NULL, NULL);

::CloseHandle(hToken);

HANDLE hFile = ::CreateFile(szPath, 0, FILE_SHARE_READ | FILE_SHARE_WRITE,

 NULL, OPEN_EXISTING, FILE_FLAG_BACKUP_SEMANTICS, NULL);

BYTE InfoBlock[64 * 1024]; // Buffer must be large enough

PFILE_STREAM_INFORMATION pStreamInfo = (PFILE_STREAM_INFORMATION)InfoBlock;

IO_STATUS_BLOCK ioStatus;

pStreamInfo->StreamNameLength = 0; // Zero in this field means empty info block
NtQueryInformationFile(hFile, &ioStatus, InfoBlock,

 sizeof(InfoBlock), FileStreamInformation);

::CloseHandle(hFile);

The function NtQueryInformationFile places a sequence of

FILE_STREAM_INFORMATION
structures in the InfoBlock buffer.

FILE_STREAM_INFORMATION is a variable-length structure,
its size is stored in the

7/10

NextEntryOffset field (which can also be interpreted as the offset
to the next record). The

last structure in the list has zero NextEntryOffset field.

The StreamName field contains the stream name in UNICODE; the

StreamNameLength field
is the name length in bytes (there is no terminating zero).

Now we have successfully obtained the array of stream information record and can print the

stream names:

WCHAR wszStreamName[MAX_PATH];

for (;;) {

 // Check if stream info block is empty (directory may have no stream)

 if (pStreamInfo->StreamNameLength == 0) break; // No stream found

 // Get null-terminated stream name

 memcpy(wszStreamName, pStreamInfo->StreamName, pStreamInfo->StreamNameLength);
 wszStreamName[pStreamInfo->StreamNameLength / sizeof(WCHAR)] = L'\0';

 print("%S", wszStreamName);

 if (pStreamInfo->NextEntryOffset == 0) break; // No more stream records

 pStreamInfo = (PFILE_STREAM_INFORMATION)

 ((LPBYTE)pStreamInfo + pStreamInfo->NextEntryOffset); // Next stream record

}

You can remove the if (pStreamInfo->StreamNameLength == 0) check
if you don't

intend to process directories. A file always has at least one stream
so this check is not

necessary.

Please note that stream names include the attribute name, that is the unnamed stream
name

looks as ::$DATA, a stream named alt looks as :alt:$DATA and so on.

If you have DDK installed, then you already have all the required headers and import

libraries.
Otherwise download the sources and include a header file AltStreams.h
from the

ListStreams projects that contains all the required definitions. Before calling
the

NtQueryInformationFile function, include the following code for dynamic linking:

NTQUERYINFORMATIONFILE NtQueryInformationFile;

(FARPROC&)NtQueryInformationFile = ::GetProcAddress(

 ::GetModuleHandle("ntdll.dll"), "NtQueryInformationFile");

For a real life example please see the source code of our LS
command line tool. The sources

can be downloaded from the download section.

Command Line Tools

8/10

All our stream-enabled command line tools are free and can be downloaded from the

download section. You cannot distribute these
tools separately, however you can distribute

the original zip archive freely.

Copy Stream

Usage:

cs from_stream to_stream

This command copies separate streams, for example

cs C:\SomeFile.dat:str stream.dat:alt

If the stream is not specified, the command assumes the unnamed stream. For instance, the

command

cs c:\report.txt reports.txt:r20

will copy the file's primary stream. If the file report.txt has any alternate streams,
they will be

ignored (use the standard copy command to copy the file as a whole).

Delete Stream

Usage:

ds stream

Delete the specified stream, for example

ds stream.dat:alt

If no stream name is specified, the command deletes the whole file (deleting the unnamed

stream causes all the streams to be deleted).

The command don't ask for confirmation, so be careful.

Strip File (Delete All Alternate Streams)

Usage:

sf file

Deletes all file's named streams, for example

sf stream.dat

9/10

The program leaves the main unnamed stream intact, but all the attached
alternate (named)

streams will be removed.

The package also includes a batch file SFs.bat, which calls sf.exe for each
file in the current

directory.

Rename Stream

There is no known method of renaming a stream, so we have to use the copy/delete

sequence.
While this method will do the trick, renaming a large stream may take

considerable time.

Usage:

rs file oldname newname

Rename the stream oldname of the file file to newname. For example, the command

rs stream.dat alt text

renames stream.dat:alt to stream.dat:text.

List Streams

This command lists all streams of the specified file and their size.

Usage:

ls file

Example:

The LS command returns the standard success code 0 only if at least one alternate stream

was found.
See the topic "Calling From a Batch File" below for a usage example.

Calling From a Batch File

10/10

Like most standard command line commands, the stream commands return the standard

exit codes
that can be analyzed with the if errorlevel batch command. There are two

possible exit codes:
0 means success, and 1 means error. The technique is illustrated by the

following example batch file:

@echo off

echo Copying stream...

cs c:\report.txt reports.txt:20

if errorlevel 1 goto cmderr

echo Successfully copied!

goto exitbatch

:cmderr

echo Some error occured.

:exitbatch

rem Exiting the batch file....

The LS command returns the standard success code 0 when at least one alternate stream

present.
The standard error code 1 is returned if the file contains an unnamed stream only or

if I/O error occured.
The following example shows how to check for presence of alternate

streams:

@echo off

rem This batch file finds and list all files with ADS in the current directory

echo Files containing alternate streams:

for %%f in (*.*) do call :checkf %%f

goto exitbatch

:checkf

rem We don't want to list streams so throw out the output

ls %1 >nul

if not errorlevel 1 echo %1

:exitbatch

This batch file FS.bat can be downloaded as a part of the stream tools package.

Please refer to the Windows Help to learn more about Windows batch files and batch

commands.

