
1/9

Sacrificing Suspended Processes
optiv.com/insights/source-zero/blog/sacrificing-suspended-processes

September 26, 2022

EDR hooking has become a major part of an adversary’s ability to successfully compromise

an endpoint system. Over the past couple of years, there have been numerous pieces of

research on this topic, including my own, which are linked below if you would like to read

more on the subject:

If you are unfamiliar, hooking is a technique to alter the behavior of an application, allowing

EDR tools to monitor the execution flow that occurs in a process, gather information for

behavior-based analytics and detect suspicious and malicious activity. This allows for more

accurate detection rates of post-initial compromise techniques (e.g., code execution) as well

as post-exploitation techniques (e.g., privilege escalation, lateral movement, or ransomware

activity).

Before we dive into EDR unhooking any further, we need to understand why. Systemically,

the reason why EDR unhooking is such a prevalent technique is that most products utilize

userland hooks to detect and prevent malicious behavior. Userland provides the widest range

of functions a security product can hook to see and provides a tremendous amount of

detailed telemetry for products to make determinations on the behavior going on within the

process. The downside to userland hooking is that everything in the userland space has the

same permissions. This means that an adversary’s code has the same read and write

permissions as the security product’s hooks. If an adversary knows where a hook exists, they

can tamper with or overwrite it, defeating the product.

This architecture has posed a challenge for EDRs as moving hooking to another area of a

process, such as in the Kernel, can be quite difficult, involving a rewrite of the entire product

and introducing potential stability issues. Some products over the past few years have

adapted by trying to monitor known ways adversaries tamper or overwrite hooks before these

actions occur. This article will walk through the discovery of another method, how it works,

why it works, and what can be done to stop it. While there has been a lot of focus on EDR

hooks and circumventing them, this is not intended to be a negative narrative towards EDRs.

The focus on all this research is to help highlight weaknesses that adversaries can exploit and

by highlighting these issues, the hope is to start a discussion of how these products can

improve.

Memory Mapping

https://www.optiv.com/insights/source-zero/blog/sacrificing-suspended-processes


2/9

Inside every Windows based process, multiple DLLs are loaded into the process's memory to

provide the functionality that allows the application to interact with the operating system. A

DLL is library that contains code and data that can be used by more than one program at the

same time. When loaded into memory, the DLLs occupy a space in that process's memory. As

these DLLs are required for the process to run properly, they are mapped to a section of that

process's memory so that the application can reference the functions stored dynamically.

Every process is different but at minimum, every process needs Kernel32.dll, Kernelbase.dll,

and Ntdll.dll to operate. This is because these DLLs contain the low-level instructions and

API calls needed for the process to interact with the operating system. Where things get

interesting is when we compare two processes on the same system, we can see the same

system DLLs loaded at the same base address for both processes.

Image

Figure 1: Process Modules

Further investigation shows that the modules of each system DLLs are mapped to the same

address points, which is odd given Address Space Layout Randomization (ASLR) has been

deployed on all modern systems.

Image



3/9

Figure 2: Process Modules - DLL Mappings

Address Space Layout Randomization

ASLR is a security mechanism Microsoft implemented in 2007 (with Windows Vista) to

prevent stack memory corruption-based vulnerabilities. ASLR randomizes the address space

inside of a process, to ensure that all memory-mapped objects, the stack, the heap, and the

executable program itself are unique. Now, this is where it gets interesting because while

ASLR works, it does not for position-independent code such as DLLs. What happens with

DLLs, (specifically Known System DLLs) is that the address space is randomized once, at

boot time.

Figure 3: How DLL ASLR Works Each Boot

Process Creation

So, if we look at a process on an endpoint that contains an EDR we can see that interesting

thing. The first thing we note is that system DLLs are naturally loading as part of the startup

process. We can see the important DLLs are loaded along with the EDR's DLL that is used to

hook into the process.

Image



4/9

Figure 4: EDR DLL Loaded

In looking at Windows syscalls in Ntdll.dll, we can see that nothing is hooked yet. We can see

this because the proper assembly is there (e.g., "mov, rcx and mov eax and the syscall

number") and there are no jmp instructions here redirecting the flow of execution to an

EDR's DLL. Once the process is resumed, the EDR kicks in and hooks the syscalls.

Image

Figure 5: Process in Suspended State Not Hooked Yet

Image



5/9

Figure 6: Process Resumed and then Hooked

This means that there is a bit of a delay before an EDR begins hooking and modifying the

assembly of system DLLs. This delay is not long and the only way to see this is by setting a

break point and moving from one instruction to another utilizing a debugger and is not

feasible programmatically. However, if we create a process in a suspend state, we can see that

hardly any DLLs are loaded, except for Ntdll.dll. You can also see no EDR's DLLs are loaded,

meaning the syscalls located in Ntdll.dll are unmodified.

Image

Figure 7: Notepad.exe Started in a Suspended State

We know the following:

1. All DLLs must have the same location in memory

2. Newly created suspended processes are clean

The question becomes, how to extract the clean syscalls from this suspended process? The

answer is simple: ReadProcessMemory.

ReadProcessMemory reads a process's memory, now this API call is commonly associated

with the reading of LSASS as part of any credential-based attack, however on its own it is

inherently not malicious, especially if we are just reading an arbitrary section of memory. The

only time ReadProcessMemory will be flagged as part of something suspicious is if you are

reading something you shouldn't, like the contents of LSASS. EDR products should never flag

the fact that ReadProcessMemory was called, as there are legitimate operational uses for this

function and would result in many false positives. Instead, they look for other indicators such

as:

What is being read? Is what is being read known to be sensitive?

Does the process requesting the read have the proper access?

Was anything else loaded before this call that would be suspicious?



6/9

The EDR typically has hooks in both the process reading data and the process where data is

being read from, allowing these and other indicators to be gathered and correlated. However,

our suspend process has no EDR in it so that creates a gap in the telemetry. Next, since we

are reading a section of a system DLL that is found in every process on every Windows

system, the data itself is not sensitive. The only thing that could potentially be an indicator is

mapping the remote process's address space, as that then potentially feeds the security

product monitoring our process with a way of identifying that address space. We can take

this a step further by only focusing on a section of Ntdll.dll, its .text section, where all syscalls

are stored. So rather than reading the entire DLL we only read a subset of it.

To do this, we need to dynamically get the address of Ntdll.dll. Since the address of every

DLL is the same place per boot, we can pull this information from our own process. The most

effective way to do this is to find the base address of Ntdll.dll and the offset of .text. This will

provide the starting address of where Ntdll.dll is mapped in memory. We can do this using

the LoadLibrary function to create a pointer to Ntdll.dll in memory. This pointer will resolve

to the starting address of Ntdll.dll in memory. This is validated by monitoring the function

calls using API Monitor.

Image

Figure 8: API Monitor - LoadLibray Call

The next step is to figure out where Ntdll's .text section starts. We can do this a couple of

ways, the first is by hardcoding the offset address. An offset denotes the exact number of

bytes from the base address where they reside, given the function’s location on the stack, and

every system DLL has the same offset value for their .text section which is "0x1000" and is

the first section. The only difference is the size which can be seen below:

Image



7/9

Figure 9: DLL Properties

These can all be dynamically enumerated as the size of the .text field will be different

depending on the version of Windows in use.

Weaponizing This

We can use the WriteProcessMemory function to overwrite sections of memory that are not

writable without calling any of the memory change API functions. When

WriteProcessMemory is called to write to a section of memory that is not set up to be

writable, it temporarily modifies the permissions of the region of memory to writeable (that

is, if you have sufficient privileges, which we do, since we own the process). It writes the

value and restores the original permissions without calling the VirtualProtect function;

instead, it automatically calls the associated Syscall (NtProtectVirtualMemory). Microsoft

implemented it this way to make debuggers more stable. If debuggers want to modify

memory on the fly, they can simply modify a section without having to perform multiple

tasks. (For more information about this feature, please reference Microsoft’s article.)

Figure 10: Before – AllocateVirtualMemory is Hooked

https://devblogs.microsoft.com/oldnewthing/20181206-00/?p=100415


8/9

Figure 11: After – AllocateVirtualMemory is Not Hooked

Defending Against

Defense against this technique will be dependent on either a prevention/zero-trust mindset

using some means of application control or execution denial (preventing unauthorized or

unknown code from running at all), or via code signatures developed by antivirus vendors for

malware samples using the technique. With an out-of-the-box deployment of SysMon, for

example, the telemetry generated via execution will not present reliable events that would

present definitive indicators of maliciousness. The anomaly presented would simply be the

event indicating that a new process was executed. Endpoint controls, such as EDRs, may be

able to show that a process exists in a suspended state, however suspended processes on their

own are sometimes common on Windows hosts and are not necessarily a reliable indicator of

attack.

These factors also make proactive threat hunting difficult for the technique on its own.

Different vendors’ tools may present varying degrees of process telemetry such as indicators

of process suspension, but likely will not have an easy means of showing the associated usage

of low-level Windows APIs such as WriteProcessMemory. Typically, low-level API calls such

as those used in this technique are not presented to end users or security analysts, meaning

that there is an implicit dependence on endpoint security product vendors to develop in-

memory signatures specific to their product engine, where API calls and flows can be

scrutinized in real time.

In theoretical terms, it appears plausible that a memory/behavioral signature could be

written that identifies a sequence of events where the code calls ReadProcessMemory, which

returns a value that matches the size of the .text section in ntdll.dll (0x119000, or 1150976

bytes for this version of Windows, sizes may vary for future versions). From there, if the

event was followed by a WriteProcessMemory call which passes the same 0x119000 value, it

might indicate that this technique is in use. Whether or not a scanning engine currently has

the capability to check this kind of logic, however, is not necessarily clear. Typically, such

specifics are typically closely held secrets for EDR engines. Regardless, this kind of

behavioral pattern will likely not be presented to a normal security analyst or threat hunter

working within a product’s dashboards.



9/9

Techniques such as this one remains a persistent reminder that mousetraps must always be

improving to keep pace with the cats. It is also important to consider that this code would

only be one small part of a series of adverse events occurring on a computer, or elsewhere on

the network, which may still be detectable with existing security controls. From an endpoint

vendor perspective, you can't focus on one technique on its own, instead the focus needs to

be on the bigger picture of all the different events in the sequence. Adversaries have

numerous different ways of circumventing these protections to establish an initial foothold;

focusing solely on detecting evasion-based or initial foothold techniques creates a narrow

focus, resulting in blind spots. Post-exploitation activities still generate considerable

telemetry that is often not being acted upon or ingested by organizations and fixating on a

single novel method of loading malicious code such as this should not be a takeaway.

Malware researchers can continue to evaluate this method to identify additional

opportunities for detection, and we remain optimistic that new detection methods will

emerge as research continues.








