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EDR hooking has become a major part of an adversary’s ability to successfully compromise
an endpoint system. Over the past couple of years, there have been numerous pieces of
research on this topic, including my own, which are linked below if you would like to read
more on the subject:

If you are unfamiliar, hooking is a technique to alter the behavior of an application, allowing
EDR tools to monitor the execution flow that occurs in a process, gather information for
behavior-based analytics and detect suspicious and malicious activity. This allows for more
accurate detection rates of post-initial compromise techniques (e.g., code execution) as well
as post-exploitation techniques (e.g., privilege escalation, lateral movement, or ransomware
activity).

Before we dive into EDR unhooking any further, we need to understand why. Systemically,
the reason why EDR unhooking is such a prevalent technique is that most products utilize
userland hooks to detect and prevent malicious behavior. Userland provides the widest range
of functions a security product can hook to see and provides a tremendous amount of
detailed telemetry for products to make determinations on the behavior going on within the
process. The downside to userland hooking is that everything in the userland space has the
same permissions. This means that an adversary’s code has the same read and write
permissions as the security product’s hooks. If an adversary knows where a hook exists, they
can tamper with or overwrite it, defeating the product.

This architecture has posed a challenge for EDRs as moving hooking to another area of a
process, such as in the Kernel, can be quite difficult, involving a rewrite of the entire product
and introducing potential stability issues. Some products over the past few years have
adapted by trying to monitor known ways adversaries tamper or overwrite hooks before these
actions occur. This article will walk through the discovery of another method, how it works,
why it works, and what can be done to stop it. While there has been a lot of focus on EDR
hooks and circumventing them, this is not intended to be a negative narrative towards EDRs.
The focus on all this research is to help highlight weaknesses that adversaries can exploit and
by highlighting these issues, the hope is to start a discussion of how these products can
improve.
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Inside every Windows based process, multiple DLLs are loaded into the process's memory to
provide the functionality that allows the application to interact with the operating system. A
DLL is library that contains code and data that can be used by more than one program at the
same time. When loaded into memory, the DLLs occupy a space in that process's memory. As
these DLLs are required for the process to run properly, they are mapped to a section of that
process's memory so that the application can reference the functions stored dynamically.
Every process is different but at minimum, every process needs Kernel32.dll, Kernelbase.dll,
and Ntdll.dll to operate. This is because these DLLs contain the low-level instructions and
API calls needed for the process to interact with the operating system. Where things get
interesting is when we compare two processes on the same system, we can see the same
system DLLs loaded at the same base address for both processes.
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Figure 1: Process Modules
Further investigation shows that the modules of each system DLLs are mapped to the same
address points, which is odd given Address Space Layout Randomization (ASLR) has been
deployed on all modern systems.
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Figure 2: Process Modules - DLL Mappings

Address Space Layout Randomization

ASLR is a security mechanism Microsoft implemented in 2007 (with Windows Vista) to
prevent stack memory corruption-based vulnerabilities. ASLR randomizes the address space
inside of a process, to ensure that all memory-mapped objects, the stack, the heap, and the
executable program itself are unique. Now, this is where it gets interesting because while
ASLR works, it does not for position-independent code such as DLLs. What happens with
DLLs, (specifically Known System DLLs) is that the address space is randomized once, at
boot time.
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Figure 3: How DLL ASLR Works Each Boot

Process Creation

So, if we look at a process on an endpoint that contains an EDR we can see that interesting
thing. The first thing we note is that system DLLs are naturally loading as part of the startup
process. We can see the important DLLs are loaded along with the EDR's DLL that is used to

hook into the process.
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Figure 4: EDR DLL Loaded
In looking at Windows syscalls in Ntdll.dll, we can see that nothing is hooked yet. We can see
this because the proper assembly is there (e.g., "mov, rex and mov eax and the syscall
number") and there are no jmp instructions here redirecting the flow of execution to an
EDR's DLL. Once the process is resumed, the EDR kicks in and hooks the syscalls.
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Figure 5: Process in Suspended State Not Hooked Yet
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Figure 6: Process Resumed and then Hooked
This means that there is a bit of a delay before an EDR begins hooking and modifying the
assembly of system DLLs. This delay is not long and the only way to see this is by setting a
break point and moving from one instruction to another utilizing a debugger and is not
feasible programmatically. However, if we create a process in a suspend state, we can see that
hardly any DLLs are loaded, except for Ntdll.dll. You can also see no EDR's DLLs are loaded,
meaning the syscalls located in Ntdll.dll are unmodified.

Image

[ | | notepad exe (10040) Properties - O .4

aclos View Tools Users Help Base pddress Sipe  DesIriphon
% Refresh |} Options | @8 Find handles or DLLs 4% System informa 0x7HE59460000 224 kB Notepad
Processes Services Metwork Disk . Ox7fbboso0000  1.95MB  NT Layer DLL
Name PID CPU IyOt.. Privak

Figure 7: Notepad.exe Started in a Suspended State
We know the following:

1. All DLLs must have the same location in memory
2. Newly created suspended processes are clean

The question becomes, how to extract the clean syscalls from this suspended process? The
answer is simple: ReadProcessMemory.

ReadProcessMemory reads a process's memory, now this API call is commonly associated
with the reading of LSASS as part of any credential-based attack, however on its own it is
inherently not malicious, especially if we are just reading an arbitrary section of memory. The
only time ReadProcessMemory will be flagged as part of something suspicious is if you are
reading something you shouldn't, like the contents of LSASS. EDR products should never flag
the fact that ReadProcessMemory was called, as there are legitimate operational uses for this
function and would result in many false positives. Instead, they look for other indicators such
as:

e What is being read? Is what is being read known to be sensitive?
e Does the process requesting the read have the proper access?
e Was anything else loaded before this call that would be suspicious?
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The EDR typically has hooks in both the process reading data and the process where data is
being read from, allowing these and other indicators to be gathered and correlated. However,
our suspend process has no EDR in it so that creates a gap in the telemetry. Next, since we
are reading a section of a system DLL that is found in every process on every Windows
system, the data itself is not sensitive. The only thing that could potentially be an indicator is
mapping the remote process's address space, as that then potentially feeds the security
product monitoring our process with a way of identifying that address space. We can take
this a step further by only focusing on a section of Ntdll.dll, its .text section, where all syscalls
are stored. So rather than reading the entire DLL we only read a subset of it.

To do this, we need to dynamically get the address of Ntdll.dll. Since the address of every
DLL is the same place per boot, we can pull this information from our own process. The most
effective way to do this is to find the base address of Ntdll.dll and the offset of .text. This will
provide the starting address of where Ntdll.dll is mapped in memory. We can do this using
the LoadLibrary function to create a pointer to Ntdll.dll in memory. This pointer will resolve
to the starting address of Ntdll.dll in memory. This is validated by monitoring the function
calls using API Monitor.
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Figure 8: API Monitor - LoadLibray Call
The next step is to figure out where Ntdll's .text section starts. We can do this a couple of
ways, the first is by hardcoding the offset address. An offset denotes the exact number of
bytes from the base address where they reside, given the function’s location on the stack, and
every system DLL has the same offset value for their .text section which is "0x1000" and is
the first section. The only difference is the size which can be seen below:
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Figure 9: DLL Properties
These can all be dynamically enumerated as the size of the .text field will be different
depending on the version of Windows in use.

Weaponizing This

We can use the WriteProcessMemory function to overwrite sections of memory that are not
writable without calling any of the memory change API functions. When
WriteProcessMemory is called to write to a section of memory that is not set up to be
writable, it temporarily modifies the permissions of the region of memory to writeable (that
is, if you have sufficient privileges, which we do, since we own the process). It writes the
value and restores the original permissions without calling the VirtualProtect function;
instead, it automatically calls the associated Syscall (NtProtectVirtualMemory). Microsoft
implemented it this way to make debuggers more stable. If debuggers want to modify
memory on the fly, they can simply modify a section without having to perform multiple
tasks. (For more information about this feature, please reference Microsoft’s article.)
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Figure 10: Before — AllocateVirtualMemory is Hooked
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Figure 11: After — AllocateVirtualMemory is Not Hooked

Defending Against

Defense against this technique will be dependent on either a prevention/zero-trust mindset
using some means of application control or execution denial (preventing unauthorized or
unknown code from running at all), or via code signatures developed by antivirus vendors for
malware samples using the technique. With an out-of-the-box deployment of SysMon, for
example, the telemetry generated via execution will not present reliable events that would
present definitive indicators of maliciousness. The anomaly presented would simply be the
event indicating that a new process was executed. Endpoint controls, such as EDRs, may be
able to show that a process exists in a suspended state, however suspended processes on their
own are sometimes common on Windows hosts and are not necessarily a reliable indicator of
attack.

These factors also make proactive threat hunting difficult for the technique on its own.
Different vendors’ tools may present varying degrees of process telemetry such as indicators
of process suspension, but likely will not have an easy means of showing the associated usage
of low-level Windows APIs such as WriteProcessMemory. Typically, low-level API calls such
as those used in this technique are not presented to end users or security analysts, meaning
that there is an implicit dependence on endpoint security product vendors to develop in-
memory signatures specific to their product engine, where API calls and flows can be
scrutinized in real time.

In theoretical terms, it appears plausible that a memory/behavioral signature could be
written that identifies a sequence of events where the code calls ReadProcessMemory, which
returns a value that matches the size of the .text section in ntdll.dll (0x119000, or 1150976
bytes for this version of Windows, sizes may vary for future versions). From there, if the
event was followed by a WriteProcessMemory call which passes the same 0x119000 value, it
might indicate that this technique is in use. Whether or not a scanning engine currently has
the capability to check this kind of logic, however, is not necessarily clear. Typically, such
specifics are typically closely held secrets for EDR engines. Regardless, this kind of
behavioral pattern will likely not be presented to a normal security analyst or threat hunter
working within a product’s dashboards.
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Techniques such as this one remains a persistent reminder that mousetraps must always be
improving to keep pace with the cats. It is also important to consider that this code would
only be one small part of a series of adverse events occurring on a computer, or elsewhere on
the network, which may still be detectable with existing security controls. From an endpoint
vendor perspective, you can't focus on one technique on its own, instead the focus needs to
be on the bigger picture of all the different events in the sequence. Adversaries have
numerous different ways of circumventing these protections to establish an initial foothold;
focusing solely on detecting evasion-based or initial foothold techniques creates a narrow
focus, resulting in blind spots. Post-exploitation activities still generate considerable
telemetry that is often not being acted upon or ingested by organizations and fixating on a
single novel method of loading malicious code such as this should not be a takeaway.
Malware researchers can continue to evaluate this method to identify additional
opportunities for detection, and we remain optimistic that new detection methods will
emerge as research continues.
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