Sacrificing Suspended Processes

& optiv.com/insights/source-zero/blog/sacrificing-suspended-processes

September 26, 2022

EDR hooking has become a major part of an adversary’s ability to successfully compromise
an endpoint system. Over the past couple of years, there have been numerous pieces of
research on this topic, including my own, which are linked below if you would like to read
more on the subject:

If you are unfamiliar, hooking is a technique to alter the behavior of an application, allowing
EDR tools to monitor the execution flow that occurs in a process, gather information for
behavior-based analytics and detect suspicious and malicious activity. This allows for more
accurate detection rates of post-initial compromise techniques (e.g., code execution) as well
as post-exploitation techniques (e.g., privilege escalation, lateral movement, or ransomware
activity).

Before we dive into EDR unhooking any further, we need to understand why. Systemically,
the reason why EDR unhooking is such a prevalent technique is that most products utilize
userland hooks to detect and prevent malicious behavior. Userland provides the widest range
of functions a security product can hook to see and provides a tremendous amount of
detailed telemetry for products to make determinations on the behavior going on within the
process. The downside to userland hooking is that everything in the userland space has the
same permissions. This means that an adversary’s code has the same read and write
permissions as the security product’s hooks. If an adversary knows where a hook exists, they
can tamper with or overwrite it, defeating the product.

This architecture has posed a challenge for EDRs as moving hooking to another area of a
process, such as in the Kernel, can be quite difficult, involving a rewrite of the entire product
and introducing potential stability issues. Some products over the past few years have
adapted by trying to monitor known ways adversaries tamper or overwrite hooks before these
actions occur. This article will walk through the discovery of another method, how it works,
why it works, and what can be done to stop it. While there has been a lot of focus on EDR
hooks and circumventing them, this is not intended to be a negative narrative towards EDRs.
The focus on all this research is to help highlight weaknesses that adversaries can exploit and
by highlighting these issues, the hope is to start a discussion of how these products can
improve.

Memory Mapping

1/9

https://www.optiv.com/insights/source-zero/blog/sacrificing-suspended-processes

Inside every Windows based process, multiple DLLs are loaded into the process's memory to
provide the functionality that allows the application to interact with the operating system. A
DLL is library that contains code and data that can be used by more than one program at the
same time. When loaded into memory, the DLLs occupy a space in that process's memory. As
these DLLs are required for the process to run properly, they are mapped to a section of that
process's memory so that the application can reference the functions stored dynamically.
Every process is different but at minimum, every process needs Kernel32.dll, Kernelbase.dll,
and Ntdll.dll to operate. This is because these DLLs contain the low-level instructions and
API calls needed for the process to interact with the operating system. Where things get
interesting is when we compare two processes on the same system, we can see the same
system DLLs loaded at the same base address for both processes.

Image
B cmd.exe (7192) Properties - O : [Isass.exe (T80) Properties - O x
Memory Emvironment Handles GPU Disk and Metwork ~ Comment Environment Handles Services GPU Disk and Network ~ Comment
General Statistics Performance Threads Token Modules General Statistics Performance Threads Token Modules Memory
Name Base address Size Descriptior Name Base address Size Desarip A
advapi32.di Ox 7 5900000 696 kB Advanced naypissip.dil O 746010000 152kB Migosc
cmd.exe 0x7ff700970000 412 kB Windows negoexts.dl 0x7ffb 55110000 152kB NegoE»
e, exe.mui 0x 231705900000 132k8 Windows C netiogon.dl Ox 7o 57dS0000 830kB NetlLog
combase.dl Ox7ffb 58610000 3.33M8 Microsoft ¢ netogon. dl.mui 0x23f250b0000 16kE NetLog
ctiuser.dl Ox7fb422c0000 2.73MB Carbon Bla netproviw.dl Ox7ffb 53 170000 88kB Provisic
fitLib. ot OXTAEc00 44K Filter Librad netutis.di OxPfSICRO000 48KB Net Wi
kernel32.dIl Ox 7ffbSac40000 Te0 kB Windowes b ngcpopkeysry.di Ox7ffb3c 710000 2648 Micrasc
KernelBase.dil O 7o 58790000 2.78MB Windows h niormidna.nis Ox23f230f0000 80kE
locale.nls 0x2317b6e0000 s04kB nisi.dil O 7ffb Sad00000 32kB INSIUse
| ntdll.di 0x7FbSHOI000 LIEMB NTLayerC | |
DT L. oS o b L - a 2 owe P
O 7ffb52210000 624kB Host for St

Figure 1: Process Modules
Further investigation shows that the modules of each system DLLs are mapped to the same
address points, which is odd given Address Space Layout Randomization (ASLR) has been
deployed on all modern systems.

Image

T e b) Mk dar
= AP : ad

Memory Environment Handles = GPU Disk and Metwork ~ Comment General Statistics Performance Threads Token Modules Memory
] Hide free regions | stings.. || Refresh [Hide free regions | Stings.. || Refresh
Base address act... Use " Base address act... Use ~
Ox7ffb5b070000 C:Windows\System32\ntdll.dll Ox7ffbSb070000 C:\Windows\System32\ntdll. dll
Ox7ffh5b071000 C:\Windows\System32\ntdil.dll Ox7fb5b07 1000 C:\Windows\System32\nidll.dll
Ox7ffbSb 180000 C:\Windows\System32\ntdl.dil Ox7fibSb 18000 C:\Windows\System32\ntdll. il
0x%7Ffo5b 144000 Ci\Windows\System32\ntdl.dl 0x7Ff5h 144000 C:\Windows\System32\ntdl.dl
Ox7ffbSb 15000 C:\Windows\System32intdl.dll 0x7ffb5b 1d5000 C:\Windows\System32\ntdll.dll
0x 7ffhSb 1d 7000 C:\Windows\System32\ntdll.dll 0x7ffbsb 1d 7000 C:Wwindows\System32\ntdll.dll
0x7ffb5b 1e0000 C: Windows\System32intdll.dll Ox7ffbSb 120000 C:Wwindows\System32\ntdll.dll il |

2/9

Figure 2: Process Modules - DLL Mappings

Address Space Layout Randomization

ASLR is a security mechanism Microsoft implemented in 2007 (with Windows Vista) to
prevent stack memory corruption-based vulnerabilities. ASLR randomizes the address space
inside of a process, to ensure that all memory-mapped objects, the stack, the heap, and the
executable program itself are unique. Now, this is where it gets interesting because while
ASLR works, it does not for position-independent code such as DLLs. What happens with
DLLs, (specifically Known System DLLs) is that the address space is randomized once, at
boot time.

Boot 1 Boot 2 Boot 3

kernal32.dll

app.exe app.exe

ntdll.dll

proces
s ll user32.dll

addres / app.exe

s kernal32.dli ntdll.dll
space ntdil.dll user32.dll

kernal32.dll

Figure 3: How DLL ASLR Works Each Boot

Process Creation

So, if we look at a process on an endpoint that contains an EDR we can see that interesting
thing. The first thing we note is that system DLLs are naturally loading as part of the startup
process. We can see the important DLLs are loaded along with the EDR's DLL that is used to

hook into the process.

Image

3/9

% cmd.exe - PID: 1C18 - Module: ntdll.dll - Thread: Main Thread 2714 - x64dbg
File View Debug Trace Plugins Favourites Options Help Apr 29 2020

SOE S0 Y 9y tuBiEefis L B

By ®Poaph | flog | iNotes ® Breskpoints ™ MemoryMap [) CallStack S@SEH o Saipt
Base Module

r T . 'I‘.'- - —
00007 FF700970000| cmd. axa EDR‘ DI_:‘II:\I em32 o
00007 FFB 42260000 | Ml Sl 11 — L=\ IS 3l % o

00007FFB58790000 | kernelbase. dl Syste c:‘:t' nam- “\System32\KernelBase.
DO007FFB58D20000 | ucrtbase.dll Systeloade \System32‘ucrtbase.d]
00007 FFB5 9180000 | rpcrt4.dil Syst \System3z2\rpcrt4.dll
00007 FFBSAG10000| combase.d11 SYsST \System32\combase.dl]

C:\wi ndows\System32\kernel32.d]
C:\windows\System32'\msvcrt.dll
C:\Windows\System32\ntdl1.d11

00007 FFESAC40000| kernel32.d11 System
msvcrt.dll System
ntdl11.d11 System

Figure 4: EDR DLL Loaded
In looking at Windows syscalls in Ntdll.dll, we can see that nothing is hooked yet. We can see
this because the proper assembly is there (e.g., "mov, rex and mov eax and the syscall
number") and there are no jmp instructions here redirecting the flow of execution to an
EDR's DLL. Once the process is resumed, the EDR kicks in and hooks the syscalls.

Image

*‘.— cmd.exe - PID: 1C18 - Module: ntdil.dil - Thread: Main Thread 2714 - x64dbg
Fle View Debug Trace Plugins Favowites Opbons Help Apr 252020
CDE S0 vty twBoEe sy L RS

Bou @oeah Glog [Unotes @ sreskponts M MemoryMap () CalStak Spsed o/ Somt B symbols < Sowce S References

o[0000/ FFBSB10D0S CD ZE . ZE ~
@] 00007FFB5BLODOST c3
o] 00007FFB5BLODOSE OF1FB8400 00000000
®| 0000TFFB5BLODOG0 4C :8BD1 ZwA'I'Iucatevirtuah-'.emory
o] 00007FFB5BLODOG3 EE& 18000000 mov eax,l8
8] 00007FFB5BLODOGE FEO425 OB03FEFF 01 5 s i —
@] 00007FFBSBLODOT O - 75 03
o] 00007FFB5B10D07 2 OF05
o] 00007FFBSBL0DOT74 c3
»a] 00007FFBSBLODOT 5 D 2E
@] 00007FFB5B10D0T7 c3
o] 00007FFB5BLODOTE OF1FB400 00000000
@] 00007 FFBSBLODOBO 4C: 8801
o] 00007FFBSBLODOR3 B8 19000000
o] 00007FFESB10D0BE FEO425 OBO3FETF 01

r----@] 00007FFB5B10D090 ~ 75 03

Figure 5: Process in Suspended State Not Hooked Yet
Image

¥ emd.exe - PID: 1C18 - Medule: ntdil.dil - Thread: Main Thread 2714 - xbddbg
File View Debug Trace Plugins Favourites Options Help Apr 29 2020
o8 Ut ey tauldgsfhsr LLERS
Bov @oaph [lg

Q0007 FFESBLODOGS
00007 FFESBLODOGT

' MNotes

00007 FFB5B10D069
00007 FFB5B10D0OGE
00007 FFB5B10D06D
Q0007 FFBSELODDGE
Q0007FFBSBLODOTO
00007 FFB5BL0D07 2
00007 FFB5BLODO7 4
00007 FFB3BLODO07 5
00007 FFB5BLODOT 7
00007 FFB5BLODOTE
00007FFB5B10D0B0
Q0007 FFBSBLOD0BS

ANNN7TocceSelNnna?

i

dd al,2
or byte ptr ds:[rbx],al

g ntd1].7FFB5610D071
ne ntdll.7FFB5B8100075

OF1F8400 00000000
~ E9 EBFG6LDE7
0000

ANCR

NtQueryInformationProcess

jmp = bm = =.7FFB422ECTT0

4/9

Figure 6: Process Resumed and then Hooked
This means that there is a bit of a delay before an EDR begins hooking and modifying the
assembly of system DLLs. This delay is not long and the only way to see this is by setting a
break point and moving from one instruction to another utilizing a debugger and is not
feasible programmatically. However, if we create a process in a suspend state, we can see that
hardly any DLLs are loaded, except for Ntdll.dll. You can also see no EDR's DLLs are loaded,
meaning the syscalls located in Ntdll.dll are unmodified.

Image

[| | notepad exe (10040) Properties - O .4

aclos View Tools Users Help Base pddress Sipe DesIriphon
% Refresh |} Options | @8 Find handles or DLLs 4% System informa 0x7HE59460000 224 kB Notepad
Processes Services Metwork Disk . Ox7fbboso0000 1.95MB NT Layer DLL
Name PID CPU IyOt.. Privak

Figure 7: Notepad.exe Started in a Suspended State
We know the following:

1. All DLLs must have the same location in memory
2. Newly created suspended processes are clean

The question becomes, how to extract the clean syscalls from this suspended process? The
answer is simple: ReadProcessMemory.

ReadProcessMemory reads a process's memory, now this API call is commonly associated
with the reading of LSASS as part of any credential-based attack, however on its own it is
inherently not malicious, especially if we are just reading an arbitrary section of memory. The
only time ReadProcessMemory will be flagged as part of something suspicious is if you are
reading something you shouldn't, like the contents of LSASS. EDR products should never flag
the fact that ReadProcessMemory was called, as there are legitimate operational uses for this
function and would result in many false positives. Instead, they look for other indicators such
as:

e What is being read? Is what is being read known to be sensitive?
e Does the process requesting the read have the proper access?
e Was anything else loaded before this call that would be suspicious?

5/9

The EDR typically has hooks in both the process reading data and the process where data is
being read from, allowing these and other indicators to be gathered and correlated. However,
our suspend process has no EDR in it so that creates a gap in the telemetry. Next, since we
are reading a section of a system DLL that is found in every process on every Windows
system, the data itself is not sensitive. The only thing that could potentially be an indicator is
mapping the remote process's address space, as that then potentially feeds the security
product monitoring our process with a way of identifying that address space. We can take
this a step further by only focusing on a section of Ntdll.dll, its .text section, where all syscalls
are stored. So rather than reading the entire DLL we only read a subset of it.

To do this, we need to dynamically get the address of Ntdll.dll. Since the address of every
DLL is the same place per boot, we can pull this information from our own process. The most
effective way to do this is to find the base address of Ntdll.dll and the offset of .text. This will
provide the starting address of where Ntdll.dll is mapped in memory. We can do this using
the LoadLibrary function to create a pointer to Ntdll.dll in memory. This pointer will resolve
to the starting address of Ntdll.dll in memory. This is validated by monitoring the function
calls using API Monitor.

Image
A-A0 G @ s =0 mie SBE S0
& [0 Csers\Admir\DesktophSus, | « Time of Doy Theead Moduie Q, Am

272 4232233AM 1 KERMELEASE gm NS ethlprmationFile [fxDO00000000000 1 , & FilePositicnlrormation |

2783 Wrd33233AM 1 Sutpend.ene ReadFile [G000 an 40 [

2784 TEAZIE2ITAM 1 KERMELEASE.an =NtReadFile [0w

2785 TEAZ332IIAM N Sippend. eng Ty | D0000000000000

2788 T4233.2334M 1 KERNELEASE 0 *=HtQueryWolumelnf: ationFile | O oo, . FileFsDewicelnformation)

2787 TRAEIEZITAM 1 Suspend.exe stFilePairterx | CordOOOOOONOHNN 10, {u = | LowPast = O, HighPart ChradPart = 0, FILE_BEGIM)

2783 TE4233Z33AM 1T KERNELEASE.dm NS etint ot Filie [CueO000000000000 b0, A , 8 FilePositieninlormation)

2789 Tea233.2334aM 1 Suspend.exe LoadiibraryW | "CVindows\System32ntdilair |

2790 TRAEEE2I5AM 1 FERMELBASE.dm tlinkcode StingEx | ! | notepad.ee (11516) Properties - [m] »

7 TEAZIZ2I3AM 1 KERMELEASE. an 1 L8 :

2792 W33 233AM 1 Suppend.ene virt fllslioc [, 115504 Envirgement Handies U Disk and Metwerk Comment
= xj< General Statstics Perfermance Threads Tokery Hodules Miemery
= Type Hame Post-Call Value J] e Base sddress Siee Descripton

5 . . - . notepad.exe OxTHES94G60000 224 kB Notepad
1 IPCTSTR 4 @ IpFiebiame Ox000000C00000: Wn dow s System 32 unt LIl
e = e e n7fBH990000 L9SMB NTLayer DLL
HIMODULE ¥ Retum I D000 TH DD 52 50000 "C'(Win dows STSTEMEZ it dIl. di Iw

Figure 8: API Monitor - LoadLibray Call
The next step is to figure out where Ntdll's .text section starts. We can do this a couple of
ways, the first is by hardcoding the offset address. An offset denotes the exact number of
bytes from the base address where they reside, given the function’s location on the stack, and
every system DLL has the same offset value for their .text section which is "0x1000" and is
the first section. The only difference is the size which can be seen below:

Image

6/9

{ ChWindows! System32intdILdll Properties
General | [mports Exports Load config General Imports Exports Load config General Exports Load config
File e | Fila
Micrasoft COM for Windows Winidaws NT BASE APT Chant DLL NT Layer DLL
[verified) Morasaft Windows [Warified) Microsaft Windows (verified) Mioross fi Windows
Version: 10.0.19041. 1682 Version: 10.0.19041.1706 Version: 10.0.19041. 1682
Target machine: AMDG4 Target machine: AMDE4 Target machine: AMDE4
Time stamp: 1:29:57 AM 6131997 Time stamp: 4:59: 11 PM 8/29/2011 Time stamp: 5:12:28 PM 7/26/2035
Image hase: (Crx 130000000 Image base: O 180000000 Image base: O 180000000
Checksum: 0360476 (cormect) Checksum: Owcas1s (comect) Checkesum: 0 1fe38h (correct)
Subsystam: Windows CLI Subystenm: Windews QU Subgystenm: Windowes OUT
Subsystem version: 100 Subsystem version: 10,0 Subsystem version: 10.0
Characteristics: Executable, DLL, Large addri Characterisbcs: Executable, DLL, Largd Characterisbcs: Executable, DLL, Large addr
Sections: Saciions: Sections:
v Size : o Size ey Size
et (e 1004 O 233600 et O 1000 Onc?d<400 Stext O 1000 Che 115000
%5000 - 0033000 gt i o
rdata O 232000 Oxc3al0 Jdata Oady 2000 Due500 RT O 13b000 O

Jdata Qo 300000 O 2800 -pdata Oadby3000 Do 5500 rdata O 13000 e

Figure 9: DLL Properties
These can all be dynamically enumerated as the size of the .text field will be different
depending on the version of Windows in use.

Weaponizing This

We can use the WriteProcessMemory function to overwrite sections of memory that are not
writable without calling any of the memory change API functions. When
WriteProcessMemory is called to write to a section of memory that is not set up to be
writable, it temporarily modifies the permissions of the region of memory to writeable (that
is, if you have sufficient privileges, which we do, since we own the process). It writes the
value and restores the original permissions without calling the VirtualProtect function;
instead, it automatically calls the associated Syscall (NtProtectVirtualMemory). Microsoft
implemented it this way to make debuggers more stable. If debuggers want to modify
memory on the fly, they can simply modify a section without having to perform multiple
tasks. (For more information about this feature, please reference Microsoft’s article.)

v M Suspend.exe - PID: 7645 - Module: mdildil - Theead: Main Theasd 6980 - x6ddbyg
Al Fle Vew Debug Traomg Pugms Favouses Opsems Ml .
| O %0 5% w4 tal s P p LB
B ou Flog Mokes ® Bredponts B MemoryMap (L) CalStadk S SEM ol Sy

Tocateviroualuesory I

Ime TFFDEFIL0LTE

el

€< int3
FEO4I5 OBOIFETF 01 | Test byte prr ds: [TFFE0308],
7 ne nedl). FFFEIFIIDOTS

Figure 10: Before — AllocateVirtualMemory is Hooked

7/9

https://devblogs.microsoft.com/oldnewthing/20181206-00/?p=100415

i * Suspend, exe - PID: 7658 - Module: ntdildll - Thread: 8300 (swatched frem Main Thread) - xétdbg
~ Fle Vew Debug Tracng Pugns Favouites Optiors Heb] 3
oE 0 Y& w4 t2 B PRy i |
B o log hotes * Bresiponts M8 Memory Map L} Call Stack S5 SEM Sap
OF 3F BA00_ODO0I000 -
40 EB0R

B8 15000000
FEO425 OSO0IFETE 01
v FE O

Figure 11: After — AllocateVirtualMemory is Not Hooked

Defending Against

Defense against this technique will be dependent on either a prevention/zero-trust mindset
using some means of application control or execution denial (preventing unauthorized or
unknown code from running at all), or via code signatures developed by antivirus vendors for
malware samples using the technique. With an out-of-the-box deployment of SysMon, for
example, the telemetry generated via execution will not present reliable events that would
present definitive indicators of maliciousness. The anomaly presented would simply be the
event indicating that a new process was executed. Endpoint controls, such as EDRs, may be
able to show that a process exists in a suspended state, however suspended processes on their
own are sometimes common on Windows hosts and are not necessarily a reliable indicator of
attack.

These factors also make proactive threat hunting difficult for the technique on its own.
Different vendors’ tools may present varying degrees of process telemetry such as indicators
of process suspension, but likely will not have an easy means of showing the associated usage
of low-level Windows APIs such as WriteProcessMemory. Typically, low-level API calls such
as those used in this technique are not presented to end users or security analysts, meaning
that there is an implicit dependence on endpoint security product vendors to develop in-
memory signatures specific to their product engine, where API calls and flows can be
scrutinized in real time.

In theoretical terms, it appears plausible that a memory/behavioral signature could be
written that identifies a sequence of events where the code calls ReadProcessMemory, which
returns a value that matches the size of the .text section in ntdll.dll (0x119000, or 1150976
bytes for this version of Windows, sizes may vary for future versions). From there, if the
event was followed by a WriteProcessMemory call which passes the same 0x119000 value, it
might indicate that this technique is in use. Whether or not a scanning engine currently has
the capability to check this kind of logic, however, is not necessarily clear. Typically, such
specifics are typically closely held secrets for EDR engines. Regardless, this kind of
behavioral pattern will likely not be presented to a normal security analyst or threat hunter
working within a product’s dashboards.

8/9

Techniques such as this one remains a persistent reminder that mousetraps must always be
improving to keep pace with the cats. It is also important to consider that this code would
only be one small part of a series of adverse events occurring on a computer, or elsewhere on
the network, which may still be detectable with existing security controls. From an endpoint
vendor perspective, you can't focus on one technique on its own, instead the focus needs to
be on the bigger picture of all the different events in the sequence. Adversaries have
numerous different ways of circumventing these protections to establish an initial foothold;
focusing solely on detecting evasion-based or initial foothold techniques creates a narrow
focus, resulting in blind spots. Post-exploitation activities still generate considerable
telemetry that is often not being acted upon or ingested by organizations and fixating on a
single novel method of loading malicious code such as this should not be a takeaway.
Malware researchers can continue to evaluate this method to identify additional
opportunities for detection, and we remain optimistic that new detection methods will
emerge as research continues.

9/9

