
1/13

ETW Forensics - Why use Event Tracing for Windows
over EventLog? -

blogs.jpcert.or.jp/en/2024/11/etw_forensics.html

朝長 秀誠 (Shusei Tomonaga)

November 14, 2024

volatility

Email

Many people may think of EventLogs when one mentions Windows OS logs. When
investigating incidents such as malware infections, it is common to analyze the Windows OS
EventLogs to find traces that may help uncover the incident. However, since the EventLog is
not designed to detect suspicious behavior on Windows OS, you may not always find the
information you are looking for when investigating an incident. Therefore, it is necessary to
enable audit logs or install Sysmon to obtain more information. 

 There is another mechanism in Windows OS that can detect suspicious behavior. It is a
feature called Event Tracing for Windows (ETW). This is a system for managing events
generated by the kernel and processes, and it is used for debugging applications and other
purposes. ETW is also used for collecting and managing EventLogs, and in recent years it
has been used in the detection logic of EDR products and antivirus software. ETW has a
function that can log various behaviors in the OS as events by default, which makes it
possible to obtain more information than EventLogs. 

 This article explains the structure of ETW and how you can use it for your forensics.

ETW Internals

ETW architecture

Figure 1 shows the components of ETW[1]. Providers such as applications send events, and
after they are stored in buffers, consumers such as EDR receive them.

https://blogs.jpcert.or.jp/en/2024/11/etw_forensics.html
https://blogs.jpcert.or.jp/en/shu_tom/
https://blogs.jpcert.or.jp/en/shu_tom/
https://blogs.jpcert.or.jp/en/tags/volatility/
mailto:?subject=ETW%20Forensics%20-%20Why%20use%20Event%20Tracing%20for%20Windows%20over%20EventLog%3F%20-&body=https%3A%2F%2Fblogs.jpcert.or.jp%2Fen%2F2024%2F11%2Fetw_forensics.html


2/13

Figure 1: ETW architecture

Provider: Applications and drivers that send events
Consumer: Applications that receive events
Session: Relays events sent from the provider, storing them in a buffer
Controller: Creates, starts, and stops sessions (logman command[2]has controller
functionality)

You can check ETW sessions from the Performance Monitor. It also allows you to create new
sessions and prepare for event collection. As shown in Figure 2, multiple providers can be
registered in a single session.

https://blogs.jpcert.or.jp/en/.assets/etw-forensics-fig1.png


3/13

Figure 2: Example of checking a session from Performance Monitor

You can also check which providers are registered on Windows OS by executing the
following command. By default, more than 1,000 providers are registered.

> logman query providers 

With so many providers available by default, you probably thought that you would be able to
collect various logs by using them. In particular, for the purposes of incident investigation and
detecting suspicious behavior such as malware, the following providers would be useful.

Microsoft-Windows-Threat-Intelligence: Detects behavior related to process injection,
etc., which is used by malware.
Microsoft-Windows-DNS-Client: Events related to name resolution
Microsoft-Antimalware-AMFilter: Results of virus scans by Microsoft Defender
Microsoft-Windows-Shell-Core: Events related to process execution and termination
Microsoft-Windows-Kernel-Process: Events related to processes
Microsoft-Windows-Kernel-File: Events related to file operations

ETW event format

https://blogs.jpcert.or.jp/en/.assets/etw-forensics-fig2.png


4/13

There are two main ways for processing ETW events (Stream Mode). One of them is to save
ETW events as an ETL file, and the other is to save ETW events in a buffer and receive them
in real time. In both cases, ETW events are saved in the same format. Figure 3 shows the
format of ETW events.

Figure 3: ETW event format (the beginning of ETL file)

It starts with the _WMI_BUFFER_HEADER[3]. This header contains information such as the
buffer size and offset, and the date and time the event was created. The next header
depends on the contents that follow. In the case of an ETL file, the

https://blogs.jpcert.or.jp/en/.assets/etw-forensics-fig3.png


5/13

_SYSTEM_TRACE_HEADER and _TRACE_LOGFILE_HEADER follow. If these headers
are included, this indicates that it is the beginning of the ETL file and that no further ETW
events are included. If ETW events are included, it will look like Figure 4.

Figure 4: ETW event format (ETW event)

The first part of the header still starts with _WMI_BUFFER_HEADER, but the next header is
_EVENT_HEADER, followed by the actual event data.

It is difficult to parse ETW events manually because they have no signature and the type
information contained in each header affects the headers that follow, as described above. On
Windows OS, you can convert ETL files to EVTX files or CSV files as follows, because the

https://blogs.jpcert.or.jp/en/.assets/etw-forensics-fig4.png


6/13

tracerpt command is installed by default.

> tracerpt test.etl -o test.evtx -of EVTX -lr 

> tracerpt test.etl -o test.csv -of CSV 

ETW structure

You can check ETW configuration information to some extent using the performance monitor,
logman command, and registry information introduced earlier. However, not all of the
information can be checked using these methods, and you can also obtain various types of
information from the ETW structure. However, it cannot be obtained in user mode, and so
you will need to obtain it from kernel mode using a debugger or other method. You can trace
the structure of ETW providers as shown in Figure 5.

Figure 5: Structure of ETW providers

The structure of the ETW provider can be traced from an object with EtwRegistration object
type in the process, and _ETW_GUID_ENTRY and _TRACE_ENABLE_INFO contain
information such as GUID. Therefore, you can check which process is using which ETW
provider. The structure of the ETW consumer can be traced as shown in Figure 6.

https://blogs.jpcert.or.jp/en/.assets/etw-forensics-fig6.png


7/13

Figure 6: Structure of ETW consumers

You can trace the structure of the ETW consumer from the data obtained from the
PsGetCurrentServerSiloGlobals function. _WMI_LOGGER_CONTEXT and
_ETW_REALTIME_CONSUMER contain various information, and you can check the buffer
size, current buffer usage, number of lost events, and more.

Recover ETW Events

Relations between ETW events and ETW structures

Some ETW events are saved as files by default, but in many cases, they are read from the
buffer into the ETW consumer in real time, and so unless you configure them manually, most
of them are not saved on the system as files. However, since ETW events are stored in the
buffer, if you can collect the data, you may be able to use it for incident response or other
purposes. Furthermore, even if the ETL file is deleted by the attacker, the ETW events may
still be stored in the buffer. 
As mentioned earlier, the ETW event format has no signature and cannot be recovered from
disk or memory using file carving. For this reason, we explored methods to extract data from
ETW structure.

As a result, we have identified the members of the structure that store ETW events as
follows:

GlobalList（_WMI_LOGGER_CONTEXT）
BufferQueue（_WMI_LOGGER_CONTEXT）
BatchedBufferList（_WMI_LOGGER_CONTEXT）
CompressionTarget（_WMI_LOGGER_CONTEXT）
UserBufferListHead（_ETW_REALTIME_CONSUMER）

https://blogs.jpcert.or.jp/en/.assets/etw-forensics-fig5.png


8/13

GlobalList and BufferQueue are LIST_ENTRY, and the ETW events stored in the buffer are
connected as a bi-directional linked list as shown in Figure 7. All the ETW events in the
buffer are connected to GlobalList.

Figure 7: Relations between _WMI_LOGGER_CONTEXT and buffer

Because ETW structures are undocumented, it is not clear exactly why multiple members
are related to the buffer in this way, but based on the behavior, it is possible that the ETW
Stream Mode configuration affects it. Figure 8 shows the members considered to be related
to each ETW Stream Mode. When it is set to save to an ETL file, BufferQueue is used, and
when it is set to Real time, UserBufferListHead is used. Although there are differences in
usage depending on the member, all ETW events are linked to GlobalList, and so it is
probably best to refer to GlobalList when recovering ETW events.

https://blogs.jpcert.or.jp/en/.assets/etw-forensics-fig7.png


9/13

Figure 8: Relations between ETW Stream Mode and ETW structure members

ETW Scanner for Volatility3

Based on the above research results, we have created a tool for recovering ETW events
from memory images. This is implemented as a plugin for The Volatility Framework
(hereinafter referred to as "Volatility"), a memory forensics tool. Using this plugin, you can not
only recover ETW events, but also check information about ETW providers and ETW
consumers. Figure 9 shows an example of the plugin running.

https://blogs.jpcert.or.jp/en/.assets/etw-forensics-fig8.png


10/13

Figure 9: Example of executing a plugin

You can download this plugin from the following GitHub repository. We hope you find it
useful.

GitHub: JPCERTCC/etw-scan 
 https://github.com/JPCERTCC/etw-scan

Using the recovered ETW event in incident investigations

Now, let’s look at some examples of how to use the recovered ETW events in incident
investigations. To recover ETW events, specify the option --dump (for GlobalList only) or --
alldump (for all members) as follows. The number of ETW events that can be recovered
depends on the environment, but as shown in Figure 10, it is possible to recover a large
number of ETW events as ETL files.

https://blogs.jpcert.or.jp/en/.assets/etw-forensics-fig9.png
https://github.com/JPCERTCC/etw-scan


11/13

Figure 10: Example of recovering ETW events

You can parse the recovered ETL file and check for important information. For example,
there is an ETW session called LwtNetLog that is enabled by default. This ETW session has
multiple network-related ETW providers configured, and it collects various types of
information, including communication packets, DNS access, and DHCP. Check the
recovered ETW events, and you can see the destination where the malware communicates,
as shown in Figure 11. To parse the ETL file, we used tracefmt[4] This tool is not installed by
default, and so you will need to install it manually.

https://blogs.jpcert.or.jp/en/.assets/etw-forensics-fig10.png


12/13

Figure 11: Checking the recovered LwtNetLog session

Furthermore, if EDR or antivirus software is installed, you may be able to recover the ETW
events that these applications were trying to collect. Since each application tries to collect
data from different ETW providers, there may be some differences, but still there is a
possibility that useful ETW events such as Microsoft-Windows-Threat-Intelligence are
recovered.

In closing

On Windows OS, it is possible to collect various information using ETW by default. Although
we did not introduce it this time, it is also possible to monitor the system by creating a simple
EDR that combines the information collection capabilities of ETW with detection logic. You
can try using ETW for system monitoring and incident response.

Shusei Tomonaga 
 (Translated by Takumi Nakano)

References

[1] Microsoft: Event trace 
 https://learn.microsoft.com/en-us/windows/win32/etw/about-event-tracing

[2] Microsoft: logman 
 https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/logman

[3] Geoff Chappell, Software Analyst: Kernel-Mode Windows 
 https://www.geoffchappell.com/studies/windows/km/ntoskrnl/api/index.htm

https://blogs.jpcert.or.jp/en/.assets/etw-forensics-fig11.png
https://learn.microsoft.com/en-us/windows/win32/etw/about-event-tracing
https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/logman
https://www.geoffchappell.com/studies/windows/km/ntoskrnl/api/index.htm


13/13

[4] Microsoft: Tracefmt 
https://learn.microsoft.com/en-us/windows-hardware/drivers/devtest/tracefmt

https://learn.microsoft.com/en-us/windows-hardware/drivers/devtest/tracefmt

