
1/8

(13) X
x.com/tomiesghost_/article/1871653802245259725

Constructing a Win32 Control Handler in MASM

For my first Github project, I wanted to make something simple that could also
simultaneously be something I could use to show off my low-level skills.

Feeling inspired by a blog post from fellow Cr0w Academy colleague
x0reaxeax
, I had the idea to implement a control handler in x64 MASM.

For those who don’t know what signals are, I’ll provide a brief explanation from the
UNIX Code Migration Guide
on MSDN:

"UNIX signals are software interrupts that catch or indicate different types of events.
Windows on the other hand supports only a small set of signals that is restricted to
exception events only."

So of course, we were gonna have to puzzle out how signals are handled on Windows in
order to build our program.

Unlike Linux, Windows doesn’t have the
sigaction
struct to handle control signals from a process. What we do have however, is the
HandlerRoutine

https://x.com/tomiesghost_/article/1871653802245259725
https://x.com/tomiesghost_/article/1871653802245259725/media/1871653673874362368
http://x0reaxe.ax/sigaction.html
https://learn.microsoft.com/en-us/previous-versions/ms811896(v=msdn.10)#signals-and-signal-handling
https://man7.org/linux/man-pages/man2/sigaction.2.html
https://learn.microsoft.com/en-us/windows/console/handlerroutine

2/8

callback function, which does exactly the same thing.
Next, we’re going to need to use the
SetConsoleCtrlHandler
function in order to add our Handler to the calling process.

Now that we have all that down, we can write a short C program to test our newfound
knowledge:

c

#include <stdio.h>
#include <Windows.h>

BOOL WINAPI HandlerRoutine(DWORD fdwCtrlType) {
 if (fdwCtrlType == CTRL_C_EVENT)
 {
 printf("Signal caught\n");
 return EXIT_SUCCESS;
 }
}

int main(void) {
 if (!SetConsoleCtrlHandler(HandlerRoutine, TRUE))
 {
 printf("Could not install Control handler\n");
 return EXIT_FAILURE;
 }

 printf("Control Handler is installed\n");

 while (1);

 return EXIT_SUCCESS;
}

Upon running and hitting CTRL+C, we’ll see:

Signal caught.

Sexy. Let’s convert this baby to MASM.

A little stack shadow space here, some function calls there, and voila:

x86asm

https://learn.microsoft.com/en-us/windows/console/setconsolectrlhandler

3/8

includelib legacy_stdio_definitions.lib
includelib ucrt.lib
includelib kernel32.lib

SetConsoleCtrlHandler proto
printf proto
HandlerRoutine proto

.data
caughtSignal byte "Signal caught", 10, 0
handlerInstalled byte "Control Handler is installed", 10, 0

CTRL_C_EVENT equ 0
EXIT_SUCCESS equ 0

.code
main PROC
 call setConsole
 cmp rax, EXIT_SUCCESS
 jmp exit

 call installedHandler
 cmp rax, EXIT_SUCCESS
 jmp exit

exit:
 xor rax, rax
 ret

main ENDP

print PROC
 sub rsp, 40
 call printf
 add rsp, 40
 ret
print ENDP

setConsole PROC
 sub rsp, 40
 lea rcx, [setHandler]
 mov rdx, 1
 call SetConsoleCtrlHandler
 add rsp, 40

setConsole ENDP

installedHandler PROC

4/8

 sub rsp, 40
 lea rcx, handlerInstalled
 call print
 add rsp, 40

 jmp whileLp
whileLp:
 jmp whileLp

installedHandler ENDP

setHandler PROC

 sub rsp, 40
 mov rcx, CTRL_C_EVENT
 call HandlerRoutine
 add rsp, 40

 cmp rcx, 0
 jz signalCaught

signalCaught:
 lea ecx, caughtSignal
 call printf

setHandler ENDP

end

Run the program, and-

LNK2019 unresolved external symbol HandlerRoutine referenced in function
setHandler

5/8

Beg your pardon?

Something is clearly going on with HandlerRoutine. Hm.

After a few minutes of internal screaming and a quick inspection of the library file, I was led
to the root cause of the problem, that being:

Callback functions aren’t defined in the kernel32 library.

…Which meant I had to learn how they were implemented in MASM.

https://x.com/tomiesghost_/article/1871653802245259725/media/1871650922222301184

6/8

About 5 or 6 hours into scouring the web for info, I eventually ended up on a Youtube tutorial
for creating a Window using MASM, which uses the Winproc callback function.

Using the information from this, I quickly adapted my function from:

x86asm

setHandler PROC

 sub rsp, 40
 mov rcx, CTRL_C_EVENT
 call HandlerRoutine
 add rsp, 40

 cmp rcx, 0
 jz signalCaught

signalCaught:
 lea ecx, caughtSignal
 call printf

setHandler ENDP

To:

x86asm

HandlerRoutine PROC dwCtrlType:DWORD

 mov rcx, CTRL_C_EVENT
 cmp rcx, 0
 jz signalCaught

signalCaught:
 lea ecx, caughtSignal
 call printf

HandlerRoutine ENDP

And after running the changed code, I saw a glorious:

Control Handler is installed

Marveling at my genius, I clicked CTRL+C, expecting to see the holy words of “Signal
caught” before me; However, I was met with disappointment.

Although my program was indeed hitting the infinite loop, what it wasn’t doing was
intercepting the signal like it was supposed to.

7/8

This is odd. After all, I implemented the proper condition to make sure that a
CTRL_C_EVENT triggers the message response, right?

Is it time to pack up and finally consider the abomination that is webdev?

Before we decide to sell our soul to Javascript, let’s retrace our steps back to the list of
parameter values for the HandlerRoutine function, specifically CTRL_C_EVENT:

“A CTRL+C signal was received, either from keyboard input or from a signal generated
by the
GenerateConsoleCtrlEvent
function”

So the function intercepts a CTRL_C_EVENT as long as we provide the keyboard input for
it..meaning we don’t need to write a conditional in order to catch the signal.

Bet.

With that in mind, we can rewrite the previous code in our callback function:

x86asm

HandlerRoutine PROC dwCtrlType:DWORD

 mov rcx, CTRL_C_EVENT
 cmp rcx, 0
 jz signalCaught

signalCaught:
 lea ecx, caughtSignal
 call printf

HandlerRoutine ENDP

To this:

x86asm

https://learn.microsoft.com/en-us/windows/console/generateconsolectrlevent

8/8

HandlerRoutine PROC dwCtrlType:DWORD

 lea rcx, caughtSignal
 call printf

HandlerRoutine ENDP

And after giving our newly run program an anxiety-ridden click of CTRL+C, we see our final
result:

Signal caught.

https://x.com/tomiesghost_/article/1871653802245259725/media/1871653308084981760

